Skip to main content

Motor Rehabilitation Program and Robotics

  • Chapter
  • First Online:
Topics in Cognitive Rehabilitation in the TBI Post-Hospital Phase

Abstract

The Brain Injury Association of America (BIAA) defines TBI as brain injury, neither degenerative nor congenital, caused by external physical force. TBI is normally caused by a dynamic impact to the head, resulted from localized shock or from sudden movements produced by shock in other parts of the body. This can result in a combination of compression, expansion, acceleration, deceleration, and rotation of the brain inside the cranium. The complex pathophysiology of TBI includes secondary pathologic processes in the brain as inflammation, ischemia, edema, oxidative stress, apoptosis, excitotoxicity, mitochondrial dysfunction, and many chronic secondary changes [1]. In general the lesion site after TBI may be more diffuse than after stroke and the common region of lesions differ among TBI patients. So TBI lesion can produce altered or diminished state of conscience and disabilities on cognitive, behavioral, emotional, or physical performance. There are also several common neurobehavioral complications after TBI [2]. Moreover behavioral symptoms such as depression and anxiety can overlap with cognitive and motor symptoms. Apathy, fatigue, and attention also modify the clinical pattern of motor, cognitive, and mood clinical complications [3–5]. TBI involves a gradual reactivation of brain function as compensatory and associative circuits. The entire recovery process is in itself dynamic and can be significantly altered by external events, stimulation, and training. But while cognitive dysfunction after TBI is the most common claim cited by caregivers, the extent of injury to the motor system and to motor-related cognitive circuits often overlaps. So rehabilitation includes all four function domains: physical, mental, affective, and social [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park E, Bell JD, Baker AJ. Traumatic brain injury: can the consequences be stopped? CMAJ. 2008;178(9):1163–70.

    Article  Google Scholar 

  2. Bombardier CH, Fann JR, Temkin NR, Esselman PC, Barber J, Dikmen SS. Rates of major depressive disorder and clinical outcomes following traumatic brain injury. JAMA. 2010;303(19):1938–45.

    Article  CAS  Google Scholar 

  3. Hoofien D, Gilboa A, Vakil E, Donovick PJ. Traumatic brain injury (TBI) 10-20 years later: a comprehensive outcome study of psychiatric symptomatology, cognitive abilities and psychosocial functioning. Brain Inj. 2001;15(3):189–209.

    Article  CAS  Google Scholar 

  4. Hoofien D, Gilboa A, Vakil E, Barak O. Unawareness of cognitive deficits and daily functioning among persons with traumatic brain injuries. J Clin Exp Neuropsychol. 2004;26(2):278–90.

    Article  Google Scholar 

  5. Hoofien D, Barak O, Vakil E, Gilboa A. Symptom checklist-90 revised scores in persons with traumatic brain injury: affective reactions or neurobehavioral outcomes of the injury? Appl Neuropsychol. 2005;12(1):30–9.

    Article  Google Scholar 

  6. Almeida TLT, Falkenburg L, Nascimento RZR, Reis CA, Sales VC, Pedroso TD, et al. Traumatismo cranioencefálico: reabilitação. Acta Fisiátrica. 2012;19(2):130. ISSN 0104–7795

    Article  Google Scholar 

  7. Fu MJ, Knutson JS, Chae J. Stroke rehabilitation using virtual environments. Phys Med Rehabil Clin N Am. 2015;26(4):747–57.

    Article  Google Scholar 

  8. Knutson JS, Fu MJ, Sheffler LR, Chae J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Phys Med Rehabil Clin N Am. 2015;26(4):729–45.

    Article  Google Scholar 

  9. Caleo M. Rehabilitation and plasticity following stroke: insights from rodent models. Neuroscience. 2015;311:180–94.

    Article  CAS  Google Scholar 

  10. Pin-Barre C, Laurin J. Physical exercise as a diagnostic, rehabilitation, and preventive tool: influence on neuroplasticity and motor recovery after stroke. Neural Plast. 2015;2015:608581.

    Article  Google Scholar 

  11. Mrachacz-Kersting N, Jiang N, Stevenson AJ, Niazi IK, Kostic V, Pavlovic A, et al. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J Neurophysiol. 2016;115(3):1410–21.

    Article  Google Scholar 

  12. Xu Y, Hou QH, Russell SD, Bennett BC, Sellers AJ, Lin Q, et al. Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation. Neural Regen Res. 2015;10(12):2072–80.

    Article  Google Scholar 

  13. Livingston-Thomas J, Nelson P, Karthikeyan S, Antonescu S, Jeffers MS, Marzolini S, et al. Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery. Neurotherapeutics. 2016;13(2):395–402.

    Article  CAS  Google Scholar 

  14. Kantak SS, Zahedi N, McGrath RL. Task-dependent bimanual coordination after stroke: relationship with sensorimotor impairments. Arch Phys Med Rehabil. 2016;97(5):798–806.

    Article  Google Scholar 

  15. Dobkin BH. Collaborative models for translational neuroscience and rehabilitation research. Neurorehabil Neural Repair. 2009a;23(7):633–40.

    Article  Google Scholar 

  16. Dobkin BH. Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr Opin Neurol. 2009b;22(6):563–9.

    Article  Google Scholar 

  17. Cheeran B, Cohen L, Dobkin B, Ford G, Greenwood R, Howard D, et al. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair. 2009;23(2):97–107.

    Article  Google Scholar 

  18. Breceda EY, Dromerick AW. Motor rehabilitation in stroke and traumatic brain injury: stimulating and intense. Curr Opin Neurol. 2013;26(6):595–601.

    Article  Google Scholar 

  19. Brewer BR, McDowell SK, Worthen-Chaudhari LC. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil. 2007;14(6):22–44.

    Article  Google Scholar 

  20. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.

    Article  Google Scholar 

  21. Jarrassé N, Proietti T, Crocher V, Robertson J, Sahbani A, Morel G, et al. Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients. Front Hum Neurosci. 2014;8:947.

    PubMed  PubMed Central  Google Scholar 

  22. Chang WH, Kim YH. Robot-assisted therapy in stroke rehabilitation. J Stroke. 2013;15(3):174–81.

    Article  Google Scholar 

  23. Poli P, Morone G, Rosati G, Masiero S. Robotic technologies and rehabilitation: new tools for stroke patients’ therapy. Biomed Res Int. 2013;2013:153872.

    Article  Google Scholar 

  24. Maclean N, Pound P. A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc Sci Med. 2000;50(4):495–506.

    Article  CAS  Google Scholar 

  25. Rimmer JH, Chen MD, McCubbin JA, Drum C, Peterson J. Exercise intervention research on persons with disabilities: what we know and where we need to go. Am J Phys Med Rehabil. 2010;89(3):249–63.

    Article  Google Scholar 

  26. van Praag H, Kempermann G, Gage F. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2(3):266–70.

    Article  Google Scholar 

  27. Griesbach GS, Gomez-Pinilla F, Hovda DA. The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Brain Res. 2004a;1016(2):154–62.

    Article  CAS  Google Scholar 

  28. Griesbach GS, Hovda DA, Molteni R, Wu A, Gomez-Pinilla F. Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience. 2004b;125(1):129–39.

    Article  CAS  Google Scholar 

  29. Piao CS, Stoica BA, Wu J, Sabirzhanov B, Zhao Z, Cabatbat R, et al. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis. 2013;54:252–63.

    Article  Google Scholar 

  30. Guskiewicz KM, Goldman SB. A changing landscape: traumatic brain injury in military combat and civilian athletics. FASEB J. 2013;27(11):4327–9.

    Article  CAS  Google Scholar 

  31. Guskiewicz KM. When treating sport concussion, check the boxes, but also go the extra mile. J Athl Train. 2013;48(4):441.

    Article  Google Scholar 

  32. Humm J, Kozlowski D, James D, Gotts J, Schallert T. Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res. 1998;783(2):286–92.

    Article  CAS  Google Scholar 

  33. Debert CT, Herter TM, Scott SH, Dukelow S. Robotic assessment of sensorimotor deficits after traumatic brain injury. J Neurol Phys Ther. 2012;36(2):58–67.

    Article  Google Scholar 

  34. Subbian V, Meunier JM, Korfhagen JJ, Ratcliff JJ, Shaw GJ, Beyette FR. Quantitative assessment of post-concussion syndrome following mild traumatic brain injury using robotic technology. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5353–6.

    PubMed  PubMed Central  Google Scholar 

  35. Kiguchi K, Imada Y, Liyanage M. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3040–3.

    PubMed  Google Scholar 

  36. Lapitskaya N, Nielsen JF, Fuglsang-Frederiksen A. Robotic gait training in patients with impaired consciousness due to severe traumatic brain injury. Brain Inj. 2011;25(11):1070–9.

    Article  Google Scholar 

  37. Krebs HI, Ferraro M, Buerger SP, Newbery MJ, Makiyama A, Sandmann M, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil. 2004;1(1):5.

    Article  Google Scholar 

  38. Krebs HI, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, et al. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):327–35.

    Article  Google Scholar 

  39. Krebs HI, Volpe B, Hogan N. A working model of stroke recovery from rehabilitation robotics practitioners. J Neuroeng Rehabil. 2009;6:6.

    Article  Google Scholar 

  40. Krebs HI, Volpe BT. Rehabilitation robotics. Handb Clin Neurol. 2013;110:283–94.

    Article  CAS  Google Scholar 

  41. Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, et al. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke. 2014;45(1):200–4.

    Article  Google Scholar 

  42. Krebs HI, Volpe BT. Robotics: a rehabilitation modality. Curr Phys Med Rehabil Rep. 2015;3(4):243–147.

    Article  Google Scholar 

  43. Lo AC, Guarino P, Krebs HI, Volpe BT, Bever CT, Duncan PW, et al. Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for VA ROBOTICS. Neurorehabil Neural Repair. 2009;23(8):775–83.

    Article  Google Scholar 

  44. Volpe BT, Ferraro M, Lynch D, Christos P, Krol J, Trudell C, et al. Robotics and other devices in the treatment of patients recovering from stroke. Curr Atheroscler Rep. 2004;6(4):314–9.

    Article  Google Scholar 

  45. Volpe BT, Ferraro M, Lynch D, Christos P, Krol J, Trudell C, et al. Robotics and other devices in the treatment of patients recovering from stroke. Curr Neurol Neurosci Rep. 2005;5(6):465–70.

    Article  Google Scholar 

  46. Schwartz I, Meiner Z. Robotic-assisted gait training in neurological patients: who may benefit? Ann Biomed Eng. 2015;43(5):1260–9.

    Article  Google Scholar 

  47. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.

    Article  CAS  Google Scholar 

  48. Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, et al. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22(3):305–10.

    Article  Google Scholar 

  49. Volpe BT, Huerta PT, Zipse JL, Rykman A, Edwards D, Dipietro L, et al. Robotic devices as therapeutic and diagnostic tools for stroke recovery. Arch Neurol. 2009;66(9):1086–90.

    Article  Google Scholar 

  50. Beretta E, Romei M, Molteni E, Avantaggiato P, Strazzer S. Combined robotic-aided gait training and physical therapy improve functional abilities and hip kinematics during gait in children and adolescents with acquired brain injury. Brain Inj. 2015;29(7–8):955–62.

    Article  Google Scholar 

  51. Esquenazi A, Lee S, Packel AT, Braitman L. A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. PM R. 2013;5(4):280–90.

    Article  Google Scholar 

  52. Turner-Stokes L, Pick A, Nair A, Disler PB, Wade DT. Multi-disciplinary rehabilitation for acquired brain injury in adults of working age. Cochrane Database Syst Rev. 2015;12:CD004170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeca Boltes Cecatto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cecatto, R.B., Battistella, L.R. (2018). Motor Rehabilitation Program and Robotics. In: Anghinah, R., Paiva, W., Battistella, L., Amorim, R. (eds) Topics in Cognitive Rehabilitation in the TBI Post-Hospital Phase. Springer, Cham. https://doi.org/10.1007/978-3-319-95376-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95376-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95374-8

  • Online ISBN: 978-3-319-95376-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics