Skip to main content

Abstract

Traditionally, computed tomography (CT) and conventional magnetic resonance imaging (MRI) have played a crucial role in the acute management of traumatic brain injury (TBI). However, several challenges arise in applying neuroimaging methods to predict clinical outcome in patients with a broad range of degree of injuries, especially in individuals who develop persistent symptoms despite minor findings on standard imaging.

Novel anatomical/structural techniques, such as susceptibility-weighted imaging (SWI) and diffusion tensor imaging (DTI), and functional techniques, including resting-state and task-based functional MRI (fMRI), perfusion MRI, proton magnetic resonance spectroscopy (1H-MRS), single photon emission computed tomography (SPECT), and positron-emission tomography (PET), have emerged and have the potential to identify hitherto undetected brain abnormalities in head injury survivors. In this chapter, we review some basic technical aspects of these modern techniques along with their contributions to the understanding of pathophysiology of TBI and their potential use to indicate biomarkers and prognosis. In the future, these modern imaging tools may also aid in selection of patients for targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1H-MRS:

Proton magnetic resonance spectroscopy

AD:

Axial diffusivity

ASL:

Arterial spin labeling

BIAA:

Brain Injury Association of America

BOLD:

Blood-oxygen-level-dependent

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

Cho:

Choline

Cr:

Creatine

CT:

Computed tomography

CTE:

Chronic traumatic encephalopathy

DAI:

Diffuse axonal injury

DSC:

Dynamic susceptibility contrast imaging

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy (FA)

FDG:

[18F]fluorodeoxyglucose

FLAIR:

Fluid-attenuated inversion recovery

fMRI:

Functional MRI

GCS:

Glasgow coma scale

GLx:

Glutamate/glutamine

Ins:

Myoinositol

Lac:

Lactate

MD:

Mean diffusivity

MRI:

Magnetic resonance imaging

MTT:

Mean transit time

NAA:

N-acetyl aspartate

PET:

Positron-emission tomography

PIB:

11C-Pittsburgh compound B

rCBV:

Regional cerebral blood flow

RD:

Radial diffusivity

ROI:

Region of interest

RS-fMRI:

Resting-state fMRI

SPECT:

Single photon emission computed tomography

SWI:

Susceptibility-weighted imaging

T2*-GRE:

T2*-weighted gradient-recalled echo

TBI:

Traumatic brain injury

TBSS:

Tract-based spatial statistics

WM:

White matter

References

  1. Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil. 2010;25(2):72–80.

    Article  PubMed  Google Scholar 

  2. Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E. Incidence and lifetime costs of injuries in the United States. Inj Prev. 2006;12(4):212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shively S, Scher AI, Perl DP, Diaz-Arrastia R. Dementia resulting from traumatic brain injury: what is the pathology? Arch Neurol. 2012;69(10):1245–51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Little DM, Kraus MF, Joseph J, Geary EK, Susmaras T, Zhou XJ, et al. Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology. 2010;74(7):558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caeyenberghs K, Leemans A, Leunissen I, Michiels K, Swinnen SP. Topological correlations of structural and functional networks in patients with traumatic brain injury. Front Hum Neurosci. 2013;7.

    Google Scholar 

  6. Silver JM, McAllister TW, Arciniegas DB. Depression and cognitive complaints following mild traumatic brain injury. Am J Psychiatr. 2009;166(6):653–61.

    Article  PubMed  Google Scholar 

  7. Bruns TJ, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003;44:2–10.

    Article  PubMed  Google Scholar 

  8. Saatman KE, Duhaime A-C, Bullock R, Maas AIR, Valadka A, Manley GT, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Currie S, Saleem N, Straiton JA, Macmullen-Price J, Warren DJ, Craven IJ. Imaging assessment of traumatic brain injury. Postgrad Med J. 2016;92(1083):41–50.

    Article  PubMed  Google Scholar 

  10. Rosa CM, Luigi B, Antonio D, Nicoletta A, Gloria L, Marco G. Early prognosis after severe traumatic brain injury with minor or absent computed tomography scan lesions. Journal of Trauma-Injury Infection and Critical Care. 2011;70(2):447–51.

    Article  Google Scholar 

  11. Mechtler LL, Shastri KK, Crutchfield KE. Advanced neuroimaging of mild traumatic brain injury. Neurol Clin. 2014;32(1):31.

    Article  PubMed  Google Scholar 

  12. DiLeonardi AM, Huh JW, Rahupathi R. Impaired axonal transport and neurofilament compaction occur in separate populations of injured axons following diffuse brain injury in the immature rat. Brain Res. 2009;1263:174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang XF, Wang H, Wen L. From myelin debris to inflammatory responses: a vicious circle in diffuse axonal injury. Med Hypotheses. 2011;77(1):60–2.

    Article  CAS  PubMed  Google Scholar 

  14. Jia Li X-Y, Dong-FuPan D-C. Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis. Journal of Trauma-Injury Infection and Critical Care. 2010;69(6):1610–8.

    Article  Google Scholar 

  15. Ng HK, Mahaliyana RD, Poon WS. The pathological spectrum of diffuse axonal injury in blunt head trauma - assessment with axon and myelin stains. Clin Neurol Neurosurg. 1994;96(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  16. Mathias JL, Beall JA, Bigler ED. Neuropsychological and information processing deficits following mild traumatic brain injury. J Int Neuropsychol Soc. 2004;10(2):286–97.

    Article  PubMed  Google Scholar 

  17. Nakayama N, Okumura A, Shinoda J, Yasokawa YT, Miwa K, Yoshimura SI, et al. Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. Journal of Neurology Neurosurgery and Psychiatry. 2006;77(7):850.

    Article  CAS  Google Scholar 

  18. Giugni E, Sabatini U, Hagberg GE, Formisano R, Castriota-Scanderbeg A. Fast detection of diffuse axonal damage in severe traumatic brain injury: comparison of gradient-recalled echo and turbo proton echo planar spectroscopic imaging MRI sequences. Am J Neuroradiol. 2005;26(5):1140–8.

    PubMed  Google Scholar 

  19. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999;20(4):637–42.

    CAS  PubMed  Google Scholar 

  20. Yanagawa Y, Sakamoto T, Takasu A, Okada Y. Relationship between maximum intracranial pressure and traumatic lesions detected by T2*-weighted imaging in diffuse axonal injury. J Trauma-Injury Infection Critical Care. 2009;66(1):162–5.

    Article  Google Scholar 

  21. Luccichenti G, Giugni E, Peran P, Cherubini A, Barba C, Bivona U, et al. 3 Tesla is twice as sensitive as 1.5 Tesla magnetic resonance imaging in the assessment of diffuse axonal injury in traumatic brain injury patients. Funct Neurol. 2010;25(2):109–14.

    PubMed  Google Scholar 

  22. Hasiloglu ZI, Albayram S, Selcuk H, Ceyhan E, Delil S, Arkan B, et al. Cerebral microhemorrhages detected by susceptibility-weighted imaging in amateur boxers. Am J Neuroradiol. 2011;32(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Kou Z, Tian Y. Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques. Neural Regen Res. 2014;9(12):1222–30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chastain CA, Oyoyo UE, Zipperman M, Joo E, Ashwal S, Shutter LA, et al. Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. J Neurotrauma. 2009;26(8):1183–96.

    Article  PubMed  Google Scholar 

  25. Sigmund GA, Tong KA, Nickerson JP, Wall CJ, Oyoyo U, Ashwal S. Multimodality comparison of neuroimaging in pediatric traumatic brain injury. Pediatr Neurol. 2007;36(4):217–26.

    Article  PubMed  Google Scholar 

  26. Babikian T, Freier MC, Tong KA, Nickerson JP, Wall CJ, Holshouser BA, et al. Susceptibility weighted imaging: Neuropsychologic outcome and pediatric head injury. Pediatr Neurol. 2005;33(3):184–94.

    Article  PubMed  Google Scholar 

  27. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. Am J Neuroradiol. 2008;29(4):632–41.

    Article  CAS  PubMed  Google Scholar 

  28. Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15(7–8):435–55.

    Article  PubMed  Google Scholar 

  29. Karaarslan E, Arslan A. Diffusion weighted MR imaging in non-infarct lesions of the brain. Eur J Radiol. 2008;65(3):402–16.

    Article  CAS  PubMed  Google Scholar 

  30. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. Am J Neuroradiol. 2008;29(5):843–52.

    Article  CAS  PubMed  Google Scholar 

  31. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17(3):1429–36.

    Article  PubMed  Google Scholar 

  32. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage. 2003;20(3):1714–22.

    Article  PubMed  Google Scholar 

  33. Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg. 2013;118(6):1367–77.

    Article  PubMed  Google Scholar 

  34. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31(4):1487–505.

    Article  PubMed  Google Scholar 

  35. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, DiChiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48.

    Article  CAS  PubMed  Google Scholar 

  36. Spalice A, Nicita F, Papetti L, Ursitti F, Di Biasi C, Parisi P, et al. Usefulness of diffusion tensor imaging and fiber tractography in neurological and neurosurgical pediatric diseases. Childs Nerv Syst. 2010;26(8):995–1002.

    Article  PubMed  Google Scholar 

  37. Wilde EA, McCauley SR, Hunter JV, Bigler ED, Chu Z, Wang ZJ, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70(12):948–55.

    Article  CAS  PubMed  Google Scholar 

  38. Gu L, Li J, Feng D-F, Cheng E-T, Li D-C, Yang X-Q, et al. Detection of white matter lesions in the acute stage of diffuse axonal injury predicts long-term cognitive impairments: a clinical diffusion tensor imaging study. J Trauma Acute Care Surg. 2013;74(1):242–7.

    Article  PubMed  Google Scholar 

  39. Wang JY, Bakhadirov K, Devous MD, Sr., , Abdi H, McColl R, Moore C, et al. Diffusion tensor tractography of traumatic diffuse axonal injury. Arch Neurol 2008;65(5):619–626.

    Article  PubMed  Google Scholar 

  40. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007;130:2508–19.

    Article  PubMed  Google Scholar 

  41. Huisman T, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, et al. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. Am J Neuroradiol. 2004;25(3):370–6.

    PubMed  Google Scholar 

  42. Spitz G, Maller JJ, O'Sullivan R, Ponsford JL. White matter integrity following traumatic brain injury: the association with severity of injury and cognitive functioning. Brain Topogr. 2013;26(4):648–60.

    Article  PubMed  Google Scholar 

  43. Andrade CSZA, Conceição DM, Figueiredo KG, Macruz FBC, Feltrin FS, Otaduy MCG, Leite CC, editors. Longitudinal assessment of diffusion tensor imaging metrics with voxelwise analysis in patients with traumatic brain injury. Chicago: American Society of Neuroradiology; 2015.

    Google Scholar 

  44. Amaro E. Applications and design issues in fMRI. Brain Cogn. 2005;57(3):290.

    Article  Google Scholar 

  45. Amaro E, Barker GJ. Study design in functional MRI: basic principles. Brain Cogn. 2006;60(3):220–32.

    Article  PubMed  Google Scholar 

  46. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol. 2013;34(10):1866–72.

    Article  CAS  PubMed  Google Scholar 

  47. Barkhof F, Haller S, Rombouts SARB. Resting-state functional MR imaging: a new window to the brain. Radiology. 2014;272(1):28–48.

    Article  Google Scholar 

  48. McDonald BC, Saykin AJ, McAllister TW. Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav. 2012;6(2):193–207.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shumskaya E, Andriessen TMJC, Norris DG, Vos PE. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology. 2012;79(2):175–82.

    Article  PubMed  Google Scholar 

  50. Tang L, Ge Y, Sodickson DK, Miles L, Zhou Y, Reaume J, et al. Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology. 2011;260(3):831–40.

    Article  PubMed  PubMed Central  Google Scholar 

  51. McGehee BE, Pollock JM, Maldjian JA. Brain perfusion imaging: how does it work and what should i use? J Magn Reson Imaging. 2012;36(6):1257.

    Article  PubMed  Google Scholar 

  52. Pasco A, Lemaire L, Franconi F, Lefur Y, Noury F, Saint-Andre J-P, et al. Perfusional deficit and the dynamics of cerebral edemas in experimental traumatic brain injury using perfusion and diffusion-weighted magnetic resonance imaging. J Neurotrauma. 2007;24(8):1321–30.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Garnett MR, Blamire AM, Corkill RG, Rajagopalan B, Young JD, Cadoux-Hudson TAD, et al. Abnormal cerebral blood volume in regions of contused and normal appearing brain following traumatic brain injury using perfusion magnetic resonance imaging. J Neurotrauma. 2001;18(6):585–93.

    Article  CAS  PubMed  Google Scholar 

  54. Detre JA, Rao HY, Wang DJJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging. 2012;35(5):1026–37.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging. 2015;41(5):1165–80.

    Article  PubMed  Google Scholar 

  56. Ge Y, Patel MB, Chen Q, Grossman EJ, Zhang K, Miles L, et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Inj. 2009;23(7–8):666–74.

    Article  PubMed  Google Scholar 

  57. Kim J, Whyte J, Patel S, Avants B, Europa E, Wang J, et al. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion fMRI study. J Neurotrauma. 2010;27(8):1399–411.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Maheshwari SR, Fatterpekar GM, Castillo M, Mukherji SK. Proton MR spectroscopy of the brain. Semin Ultrasound CT MRI. 2000;21(6):434–51.

    Article  CAS  Google Scholar 

  59. Castillo M, Kwock L, Mukherji SK. Clinical applications of proton MR spectroscopy. Am J Neuroradiol. 1996;17(1):1–15.

    CAS  PubMed  Google Scholar 

  60. Brooks WM, Friedman SD, Gasparovic C. Magnetic resonance spectroscopy in traumatic brain injury. J Head Trauma Rehabil. 2001;16(2):149–64.

    Article  CAS  PubMed  Google Scholar 

  61. Duckworth JL, Stevens RD. Imaging brain trauma. Curr Opin Crit Care. 2010;16(2):92–7.

    Article  PubMed  Google Scholar 

  62. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133:3232–42.

    Article  PubMed  Google Scholar 

  63. Cecil KM, Hills EC, Sandel E, Smith DH, McIntosh TK, Mannon LJ, et al. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998;88(5):795–801.

    Article  CAS  PubMed  Google Scholar 

  64. Tollard E, Galanaud D, Perlbarg V, Sanchez-Pena P, Le Fur Y, Abdennour L, et al. Experience of diffusion tensor imaging and H-1 spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med. 2009;37(4):1448–55.

    Article  PubMed  Google Scholar 

  65. Hayes JP, Bigler ED, Verfaellie M. Traumatic brain injury as a disorder of brain connectivity. J Int Neuropsychol Soc. 2016;22(2):120–37.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Léveillé J, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan RA, et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med. 1989;30(11):1902–10.

    PubMed  Google Scholar 

  67. Raji CA, Tarzwell R, Pavel D, Schneider H, Uszler M, Thornton J, et al. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS One. 2014;9(3):e91088.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pavel D, Jobe T, Devore-Best S, Davis G, Epstein P, Sinha S, et al. Viewing the functional consequences of traumatic brain injury by using brain SPECT. Brain Cogn. 2006;60(2):211–3.

    CAS  PubMed  Google Scholar 

  69. Romero K, Lobaugh NJ, Black SE, Ehrlich L, Feinstein A. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury. Psychiatry Res. 2015;231(1):15–24.

    Article  PubMed  Google Scholar 

  70. Selwyn R, Hockenbury N, Jaiswal S, Mathur S, Armstrong RC, Byrnes KR. Mild traumatic brain injury results in depressed cerebral glucose uptake: an (18)FDG PET study. J Neurotrauma. 2013;30(23):1943–53.

    Article  PubMed  Google Scholar 

  71. Humayun MS, Presty SK, Lafrance ND, Holcomb HH, Loats H, Long DM, et al. Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairments. Nucl Med Commun. 1989;10:335–44.

    Article  CAS  PubMed  Google Scholar 

  72. Wilde EA, Bouix S, Tate DF, Lin AP, Newsome MR, Taylor BA, et al. Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits. Brain Imaging Behav. 2015;9(3):367–402.

    Article  PubMed  Google Scholar 

  73. Buchsbaum MS, Simmons AN, DeCastro A, Farid N, Matthews SC. Clusters of low (18)F-Fluorodeoxyglucose uptake voxels in combat veterans with traumatic brain injury and post-traumatic stress disorder. J Neurotrauma. 2015;32(22):1736–50.

    Article  PubMed  Google Scholar 

  74. Byrnes KR, Wilson CM, Brabazon F, von Leden R, Jurgens JS, Oakes TR, et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenerg. 2014;5:13.

    Article  Google Scholar 

  75. Scott G, Ramlackhansingh AF, Edison P, Hellyer P, Cole J, Veronese M, et al. Amyloid pathology and axonal injury after brain trauma. Neurology. 2016;86(9):821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Merrill DA, et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015;112(16):E2039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Velázquez A, Ortega M, Rojas S, González-Oliván FJ, Rodríguez-Baeza A. Widespread microglial activation in patients deceased from traumatic brain injury. Brain Inj. 2015;29(9):1126–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia da Costa Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrade, C.S., Lucato, L.T., Buchpiguel, C.A., da Costa Leite, C. (2018). Functional Neuroimage. In: Anghinah, R., Paiva, W., Battistella, L., Amorim, R. (eds) Topics in Cognitive Rehabilitation in the TBI Post-Hospital Phase. Springer, Cham. https://doi.org/10.1007/978-3-319-95376-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95376-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95374-8

  • Online ISBN: 978-3-319-95376-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics