Skip to main content

Moving into the Third Decade of Nanoscale Zero-Valent Iron (NZVI) Development: Best Practices for Field Implementation

  • Chapter
  • First Online:

Abstract

This chapter provides an overview of environmental restoration efforts involving the application of NZVI. The chapter focuses on the novel application techniques aimed at improving the delivery, characterization, and effectiveness of NZVI, drawing on over two decades of peer-reviewed literature. Stressing a base of knowledge through detailed site characterization toward a site conceptual model, this chapter discusses delivery techniques, options for NZVI formulation, and challenges associated with different site conditions. NZVI particle types and injection characteristics are covered along with field-ready analytical capabilities for NZVI detection and characterization. The chapter also highlights cases where remote sensing and modeling have been used to better understand NZVI delivery. Lessons learned from past field studies are discussed and will become increasingly relevant as the industry gears up for a renaissance of NZVI use. Growing confidence in the use cases for stabilized NZVI, the synergistic application of ZVI + bioremediation and technological advances such as sulfidation will catch the eye of practitioners and site managers into the future and lead to more innovation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abriola, L. R. A., & Pennell, K. (2011). Final report: Development and optimization of targeted nanoscale Iron delivery methods for treatment of NAPL source zones. Strategic Environmental Research and Development Program. Tufts University.

    Google Scholar 

  • Acar, Y. B., & Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation. Environmental Science & Technology, 27, 2638–2647.

    Article  CAS  Google Scholar 

  • Adeleye, A., Keller, A., Miller, R., & Lenihan, H. (2013). Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. Journal of Nanoparticle Research, 15, 1–18.

    Article  CAS  Google Scholar 

  • Annable, M. D., Jawitz, J. W., Rao, P. S. C., Dai, D. P., Kim, H., & Wood, A. L. (1998). Field evaluation of interfacial and partitioning tracers for characterization of effective NAPL-water contact areas. Ground Water, 36, 495–502.

    Article  CAS  Google Scholar 

  • Arnason, J. G., Harkness, M., & Butler-Veytia, B. (2014). Evaluating the subsurface distribution of zero-valent Iron using magnetic susceptibility. Groundwater Monitoring & Remediation, 34, 96–106.

    Article  CAS  Google Scholar 

  • Arnold, W. A., & Roberts, A. L. (2000). Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environmental Science & Technology, 34, 1794–1805.

    Article  CAS  Google Scholar 

  • Baalousha, M. (2009). Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Science of the Total Environment, 407, 2093–2101.

    Article  CAS  Google Scholar 

  • Bai, R., & Tien, C. (1996). A new correlation for the initial filter coefficient under unfavorable surface interactions. Journal of Colloid and Interface Science, 179, 631–634.

    Article  CAS  Google Scholar 

  • Bai, R., & Tien, C. (1999). Particle deposition under unfavorable surface interactions. Journal of Colloid and Interface Science, 218, 488–499.

    Article  CAS  Google Scholar 

  • Barnes, R. J., Riba, O., Gardner, M. N., Singer, A. C., Jackman, S. A., & Thompson, I. P. (2010). Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere, 80(5), 554–562.

    Article  CAS  Google Scholar 

  • Bennett, P., He, F., Zhao, D., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116, 35.

    Article  CAS  Google Scholar 

  • Benson, R. C. (2005). Practical handbook of environmental site characterization and ground-water monitoring (2nd ed.pp. 249–295). CRC Press: Boca Raton, FL.

    Google Scholar 

  • Berge, N. D., & Ramsburg, C. A. (2009). Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environmental Science & Technology, 43, 5060–5066.

    Article  CAS  Google Scholar 

  • Buchau, A., Rucker, W. M., De Boer, C. V., & Klaas, N. (2010). Inductive detection and concentration measurement of nano sized zero valent iron in the subsurface. IET Science, Measurement and Technology, 4, 289–297.

    Article  CAS  Google Scholar 

  • Butler, J. J. (1997). The design, performance, and analysis of slug tests. Boca Raton: Taylor & Francis.

    Book  Google Scholar 

  • Cantrell, K. J., Kaplan, D. I., & Gilmore, T. J. (1997a). Injection of colloidal Fe-0 particles in sand with shear-thinning fluids. Journal of Environmental Engineering-ASCE, 123, 786–791.

    Article  CAS  Google Scholar 

  • Cantrell, K. J., Kaplan, D. I., & Gilmore, T. J. (1997b). Injection of colloidal size particles of Fe0 in porous media with shear thinning fluids as a method to emplace a permeable reactive zone. Land Contamination and Reclamation, 5, 253–257.

    Google Scholar 

  • Cantrell, K. J., Kaplan, D. I., & Wietsma, T. W. (1995). Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 42, 201–212.

    Article  CAS  Google Scholar 

  • Chang, M. C., & Kang, H. Y. (2009). Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Journal of Environmental Science and Health, Part A, 44, 576–582.

    Article  CAS  Google Scholar 

  • Chatterjee, J., & Gupta, S. K. (2009). An agglomeration-based model for colloid filtration. Environmental Science & Technology, 43, 3694.

    Article  CAS  Google Scholar 

  • Chowdhury, A. I. A., Krol, M. M., Kocur, C. M., Boparai, H. K., Weber, K. P., Sleep, B. E., & O'Carroll, D. M. (2015). nZVI injection into variably saturated soils: Field and modeling study. Journal of Contaminant Hydrology, 183, 16–28.

    Article  CAS  Google Scholar 

  • Chowdhury, A. I. A., O'Carroll, D. M., Xu, Y., & Sleep, B. E. (2012). Electrophoresis enhanced transport of nano-scale zero valent iron. Advances in Water Resources, 40, 71–82.

    Article  CAS  Google Scholar 

  • Comba, S., Dalmazzo, D., Santagata, E., & Sethi, R. (2012). Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. Journal of Hazardous Materials, 185, 598–605.

    Article  CAS  Google Scholar 

  • Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43, 3717–3726.

    Article  CAS  Google Scholar 

  • Cullen, L. G., Tilston, E. L., Mitchell, G. R., Collins, C. D., & Shaw, L. J. (2011). Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere, 82, 1675–1682.

    Article  CAS  Google Scholar 

  • Dukhin, A. S., Goetz, P. J., & Truesdail, S. (2001). Titration of concentrated dispersions using electroacoustic ζ-potential probe. Langmuir, 17, 964–968.

    Article  CAS  Google Scholar 

  • Einarson, M. (2005). Multilevel ground-water monitoring. Practical handbook of environmental site characterization and ground-water monitoring (2nd ed.pp. 807–848). CRC Press: Boca Raton, FL.

    Chapter  Google Scholar 

  • Elliott, D. W., & Zhang, W.-X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35, 4922–4926.

    Article  CAS  Google Scholar 

  • Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H. J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131, 9–28.

    Article  CAS  Google Scholar 

  • Fernandez-Sanchez, J. M., Sawvel, E. J., & Alvarez, P. J. J. (2004). Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes. Chemosphere, 54, 823–829.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (2001). Applied hydrogeology (4th ed.). Inc, Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Gavaskar, A., Tatar, L., & Condit, W. (2005). Contract report: Cost and performance report: Nanoscale zerovalent iron technologies for source remediation. Port Huenema: NAVFAC: Naval Facilities Engineering Command.

    Book  Google Scholar 

  • Gillham, R., Vogan, J., Gui, L., Duchene, M., & Son, J. (2010). Iron barrier walls for chlorinated solvent remediantion. In H. F. Stroo & C. H. Ward (Eds.), In situ remediation of chlorinated solvent plumes (pp. 537–571). New York: Springer Science Media.

    Chapter  Google Scholar 

  • Haselow, J. S., Siegrist, R. L., Crimi, M., & Jarosch, T. (2003). Estimating the total oxidant demand for in situ chemical oxidation design. Remediation Journal, 13, 5–16.

    Article  Google Scholar 

  • He, F., Zhang, M., Qian, T., & Zhao, D. (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 334, 96–102.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemical Research, 46, 29–34.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.

    Article  CAS  Google Scholar 

  • Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zero-valent iron for source remediation - a case study. Remediation Journal, 16, 57–77.

    Article  Google Scholar 

  • ITRC. (2011). Integrated DNAPL site strategy. Washington, DC: Interstate Technology & Regulatory Council, Integrated DNAPL Site Strategy Team.

    Google Scholar 

  • Jeon, J.-R., Murugesan, K., Nam, I.-H., & Chang, Y.-S. (2013). Coupling microbial catabolic actions with abiotic redox processes: A new recipe for persistent organic pollutant (POP) removal. Biotechnology Advances, 31, 246–256.

    Article  CAS  Google Scholar 

  • Jiang, C., Liu, Y., Chen, Z., Megharaj, M., & Naidu, R. (2013). Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1. Aquatic Toxicology, 142–143, 329–335.

    Article  CAS  Google Scholar 

  • Johnson, R. L., Johnson, G. O. B., Nurmi, J. T., & Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environmental Science & Technology, 43, 5455–5460.

    Article  CAS  Google Scholar 

  • Johnson, R. L., Nurmi, J. T., O'Brien Johnson, G. S., Fan, D., O'Brien Johnson, R. L., Shi, Z., Salter-Blanc, A. J., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmental Science & Technology, 47, 1573–1580.

    Article  CAS  Google Scholar 

  • Jones, B. D., & Ingle, J. D., Jr. (2001). Evaluation of immobilized redox indicators as reversible, in situ redox sensors for determining Fe(III)-reducing conditions in environmental samples. Talanta, 55, 699–714.

    Article  CAS  Google Scholar 

  • Jones, B. D., & Ingle, J. D., Jr. (2005). Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions. Water Research, 39, 4343–4354.

    Article  CAS  Google Scholar 

  • Joyce, R. A., Glaser, D. R., Werkema, D. D., & Atekwana, E. A. (2012). Spectral induced polarization response to nanoparticles in a saturated sand matrix. Journal of Applied Geophysics, 77, 63–71.

    Article  Google Scholar 

  • Kanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O., & Zhao, D. (2008). Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environmental Science & Technology, 42, 896–900.

    Article  CAS  Google Scholar 

  • Kaplan, D. I., Cantrell, K. J., Wietsma, T. W., & Potter, M. A. (1996). Retention of zero-valent iron colloids by sand columns: Application to chemical barrier formation. Journal of Environmental Quality, 25, 1086–1094.

    Article  CAS  Google Scholar 

  • Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent Iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science & Technology, 43, 4555–4560.

    Article  CAS  Google Scholar 

  • Kirschling, T., Gregory, K., Minkley, N., Lowry, G., & Tilton, R. (2010). Impact of nanoscale zerovalent iron on geochemistry and microbial populations. Environmental Science & Technology, 44, 3474–3480.

    Google Scholar 

  • Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K. M., Martac, E., Matheis, A., Paar, H., Schäffer, A., Schell, H., Schiwy, A., Schmidt, K. R., Strutz, T. J., Thümmler, S., Tiehm, A., & Braun, J. (2014). Nanoscale zero-valent iron flakes for groundwater treatment. Environment and Earth Science, 72, 3339–3352.

    Article  CAS  Google Scholar 

  • Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., Krol, M. M., Austrins, L., Peace, C., Sleep, B. E., & O’Carroll, D. M. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science & Technology, 48, 2862–2869.

    Article  CAS  Google Scholar 

  • Kocur, C. M., O'Carroll, D. M., & Sleep, B. E. (2013). Impact of nZVI stability on mobility in porous media. Journal of Contaminant Hydrology, 145, 17–25.

    Article  CAS  Google Scholar 

  • Kram, M. L. (2005). Dnapl characterization methods and approaches. Practical handbook of environmental site characterization and ground-water monitoring (2nd ed.pp. 473–515). CRC Press: Boca Raton, FL.

    Chapter  Google Scholar 

  • Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Zhong, X., & O'Carroll, D. M. (2013). A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science & Technology, 47, 7332–7340.

    Article  CAS  Google Scholar 

  • Krug, T., O'Hara, S., Watling, M., & Quinn, J. (2010). Final report: Emulsified zero-valent nano-scale iron treatment of chlorinated solvent DNAPL source areas ESTCP (763 pp.). Washington DC.

    Google Scholar 

  • Kueper, B. H., Stroo, H. F., Vogel, C. M., Ward, C. H. (2014). Chlorinated solvent source zone remediation. Springer, New York, 713 pp.

    Google Scholar 

  • Lampron, K. J., Chiu, P. C., & Cha, D. K. (1998). Biological reduction of trichloroethene supported by Fe(0). Bioremediation Journal, 2, 175–181.

    Article  CAS  Google Scholar 

  • Lampron, K. J., Chiu, P. C., & Cha, D. K. (2001). Reductive dehalogenation of chlorinated ethenes with elemental iron: The role of microorganisms. Water Research, 35, 3077–3084.

    Article  CAS  Google Scholar 

  • Laumann, S., Micić, V., Lowry, G. V., & Hofmann, T. (2013). Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environmental Pollution, 179, 53–60.

    Article  CAS  Google Scholar 

  • Lee, M., Wells, E., Wong, Y. K., Koenig, J., Adrian, L., Richnow, H. H., & Manefield, M. (2015). Relative contributions of dehalobacter and zerovalent iron in the degradation of chlorinated methanes. Environmental Science & Technology, 49, 4481–4489.

    Article  CAS  Google Scholar 

  • Lee, S., Bi, X., Reed, R. B., Ranville, J. F., Herckes, P., & Westerhoff, P. (2014). Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environmental Science & Technology, 48, 10291–10300.

    Article  CAS  Google Scholar 

  • Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., & Jiang, G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety, 72, 684–692.

    Article  CAS  Google Scholar 

  • Li, X.-Q., & Zhang, W.-X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles - A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111, 6939–6946.

    Article  CAS  Google Scholar 

  • Li, Z. Q., Greden, K., Alvarez, P. J. J., Gregory, K. B., & Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science & Technology, 44, 3462–3467.

    Article  CAS  Google Scholar 

  • Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 40, 6085–6090.

    Article  CAS  Google Scholar 

  • Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE Dechlorination rates, pathways, and efficiency of nanoscale Iron particles with different properties. Environmental Science & Technology, 39, 1338–1345.

    Article  CAS  Google Scholar 

  • Lowry, G. V., Hill, R. J., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., Nobbmann, U., Syare, P., & Rumble, J. (2016). Guidance for measuring, interpreting, and reporting zeta potential measurements for environmental nanotechnology and nanotoxicology. Environmental Science. Nano, 3, 953–965.

    Article  CAS  Google Scholar 

  • Luna, M., Gastone, F., Tosco, T., Sethi, R., Velimirovic, M., Gemoets, J., Muyshondt, R., Sapion, H., Klaas, N., & Bastiaens, L. (2015). Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. Journal of Contaminant Hydrology, 181, 46.

    Article  CAS  Google Scholar 

  • Mace, C. (2006). Controlling groundwater VOCs: Do nanoscale ZVI particles have any advantages over microscale ZVI of BNP. Pollution Engineering, 38, 24–28.

    CAS  Google Scholar 

  • Mao, X., Wang, J., Ciblak, A., Cox, E. E., Riis, C., Terkelsen, M., Gent, D. B., & Alshawabkeh, A. N. (2012). Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. Journal of Hazardous Materials, 213–214, 311–317.

    Article  CAS  Google Scholar 

  • Martel, K. E., Martel, R., Lefebvre, R., & Gélinas, P. J. (1998). Laboratory study of polymer solutions used for mobility control during in situ NAPL recovery. Ground Water Monitoring & Remediation, 18, 103–113.

    Article  CAS  Google Scholar 

  • Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28, 2045–2053.

    Article  CAS  Google Scholar 

  • Mueller, N. C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19, 550–558.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Murdoch, L., & Slack, W. (2002). Forms of hydraulic fractures in shallow fine-grained formations. Journal of Geotechnical and Geoenvironmental Engineering, 128, 479–487.

    Article  Google Scholar 

  • Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C., Linehan, J. C., Matson, D. W., Penn, R. L., & Driessen, M. D. (2005). Characterization and properties of metallic Iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39, 1221–1230.

    Article  CAS  Google Scholar 

  • O'Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.

    Article  CAS  Google Scholar 

  • O'Hara, S., Krug, T., Quinn, J., Clausen, C., & Geiger, C. (2006). Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation Journal, 16, 35–56.

    Article  Google Scholar 

  • Oostrom, M., Wietsma, T. W., Covert, M. A., & Vermeul, V. R. (2007). Zero-valent iron emplacement in permeable porous media using polymer additions. Ground Water Monitoring and Remediation, 27, 122–130.

    Article  CAS  Google Scholar 

  • Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research International, 20, 1041–1049.

    Article  CAS  Google Scholar 

  • Pennell, K. D., Jin, M., Abriola, L. M., & Pope, G. A. (1994). Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. Journal of Contaminant Hydrology, 16, 35–53.

    Article  CAS  Google Scholar 

  • Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M., & Tufenkji, N. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environmental Science & Technology, 44, 6532–6549.

    Article  CAS  Google Scholar 

  • Phenrat, T., Cihan, A., Kim, H.-J., Mital, M., Illangasekare, T., & Lowry, G. V. (2010a). Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: Effects of particle concentration, Fe0 content, and coatings. Environmental Science & Technology, 44, 9086–9093.

    Article  CAS  Google Scholar 

  • Phenrat, T., Fagerlund, F., Illangasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45, 6102–6109.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009a). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010b). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe-0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118, 152–164.

    Article  CAS  Google Scholar 

  • Phenrat, T., Long, T. C., Lowry, G. V., & Veronesi, B. (2009b). Partial oxidation ("Aging") and surface modification decrease the toxicity of nanosized zerovalent iron. Environmental Science & Technology, 43, 195–200.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R., & Lowry, G. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10, 795–814.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.

    Article  CAS  Google Scholar 

  • Pinder, G. F., & Celia, M. A. (2006). Subsurface hydrology. Hoboken: Wiley.

    Book  Google Scholar 

  • Preslo, L. M., Nielsen, G. L., & Nielsen, D. M. (2005). Environmental site characterization. Practical handbook of environmental site characterization and ground-water monitoring (2nd ed.pp. 35–205). CRC Press: Boca Raton, FL.

    Chapter  Google Scholar 

  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O'Hara, S., Krug, T., Major, D., Yoon, W.-S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39, 1309–1318.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Naja, G., & Ghoshal, S. (2010). Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Journal of Contaminant Hydrology, 118, 143–151.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2012). Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Research, 46, 1735–1744.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2014). Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Research, 50, 80–89.

    Article  CAS  Google Scholar 

  • Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44, 3455–3461.

    Article  CAS  Google Scholar 

  • Rosenthal, H., Adrian, L., & Steiof, M. (2004). Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere, 55, 661–669.

    Article  CAS  Google Scholar 

  • Saccà, M. L., Fajardo, C., Costa, G., Lobo, C., Nande, M., & Martin, M. (2014). Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere, 104, 184–189.

    Article  CAS  Google Scholar 

  • Sakulchaicharoen, N., O'Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology, 118, 117–127.

    Article  CAS  Google Scholar 

  • Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.

    Article  CAS  Google Scholar 

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.

    Article  CAS  Google Scholar 

  • Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.

    Article  CAS  Google Scholar 

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.

    Article  CAS  Google Scholar 

  • Shi, Z., Fan, D., Johnson, R. L., Tratnyek, P. G., Nurmi, J. T., Wu, Y., & Williams, K. H. (2015). Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. Journal of Contaminant Hydrology, 181, 17–35.

    Article  CAS  Google Scholar 

  • Shi, Z., Nurmi, J. T., & Tratnyek, P. G. (2011). Effects of nano zero-valent iron on oxidation reduction potential. Environmental Science & Technology, 45, 1586–1592.

    Article  CAS  Google Scholar 

  • Slater, L., & Binley, A. (2003). Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods. Geophysics, 68, 911–921.

    Article  Google Scholar 

  • Slater, L. D., Choi, J., & Wu, Y. (2005). Electrical properties of iron-sand columns: Implications for induced polarization investigation and performance monitoring of iron-wall barriers. Geophysics, 70, G87–G94.

    Article  Google Scholar 

  • Stookey, L. L. (1970). Ferrozine - a new spectrophotometric reagent for iron. Analytical Chemistry, 42, 779.

    Article  CAS  Google Scholar 

  • Su, C., Puls, R. W., Krug, T. A., Watling, M. T., O'Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2012). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46, 5071–5084.

    Article  CAS  Google Scholar 

  • Su, Y., Adeleye, A. S., Zhou, X., Dai, C., Zhang, W., Keller, A. A., & Zhang, Y. (2014). Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. Journal of Hazardous Materials, 280, 504–513.

    Article  CAS  Google Scholar 

  • Sun, J., Wang, S., Zhao, D., Hun, F. H., Weng, L., & Liu, H. (2011). Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biology and Toxicology, 27, 333–342.

    Article  CAS  Google Scholar 

  • Sun, Q., Feitz, A. J., Guan, J., & Waite, T. D. (2008). Comparison of the reactivity of nanosized zero-valent iron (nZVI) particles produced by borohydride and dithionite reduction of iron salts. Nano, 3, 341–349.

    Article  CAS  Google Scholar 

  • Sun, Y.-P., Li, X.-Q., Cao, J., Zhang, W.-X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120, 47–56.

    Article  CAS  Google Scholar 

  • Sun, Y.-P., Li, X.-Q., Zhang, W.-X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308, 60–66.

    Article  CAS  Google Scholar 

  • Szecsody, J. E., Fruchter, J. S., Williams, M. D., Vermeul, V. R., & Sklarew, D. (2004). In situ chemical reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination. Environmental Science and Technology, 38, 4656–4663.

    Article  CAS  Google Scholar 

  • Taghavy, A., Costanza, J., Pennell, K. D., & Abriola, L. M. (2010). Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. Journal of Contaminant Hydrology, 118, 128–142.

    Article  CAS  Google Scholar 

  • Tilston, E. L., Collins, C. D., Mitchell, G. R., Princivalle, J., & Shaw, L. J. (2013). Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environmental Pollution, 173, 38–46.

    Article  CAS  Google Scholar 

  • Tiraferri, A., Chen, K. L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324, 71–79.

    Article  CAS  Google Scholar 

  • Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11, 635–645.

    Article  CAS  Google Scholar 

  • Tosco, T., & Sethi, R. (2010). Transport of non-Newtonian suspensions of highly concentrated micro- and nanoscale Iron particles in porous media: A modeling approach. Environmental Science & Technology, 44, 9062–9068.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., Johnson, R. L., Lowry, G. V., & Brown, R. A. (2014). In situ chemical reduction for source remediation. Springer.

    Google Scholar 

  • Tratnyek, P. G., Reilkoff, T., Lemon, A., Scherer, M., Balko, B., Feik, L., & Henegar, B. (2001). Visualizing redox chemistry: Probing environmental oxidation–reduction reactions with indicator dyes. The Chemical Educator, 6, 172–179.

    Article  CAS  Google Scholar 

  • Truex, M. J., Macbeth, T. W., Vermeul, V. R., Fritz, B. G., Mendoza, D. P., Mackley, R. D., Wietsma, T. W., Sandberg, G., Powell, T., Powers, J., Pitre, E., Michalsen, M., Ballock-Dixon, S. J., Zhong, L., & Oostrom, M. (2011a). Demonstration of combined zero-valent Iron and electrical resistance heating for in situ trichloroethene remediation. Environmental Science & Technology, 45, 5346–5351.

    Article  CAS  Google Scholar 

  • Truex, M. J., Vermeul, V. R., Mendoza, D. P., Fritz, B. G., Mackley, R. D., Oostrom, M., Wietsma, T. W., & Macbeth, T. W. (2011b). Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids. Ground Water Monitoring and Remediation, 31, 50–58.

    Article  CAS  Google Scholar 

  • Tufenkji, N., & Elimelech, M. (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38, 529–536.

    Article  CAS  Google Scholar 

  • Vecchia, E. D., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science & Technology, 43, 8942.

    Article  CAS  Google Scholar 

  • Velimirovic, M., Tosco, T., Uyttebroek, M., Luna, M., Gastone, F., De Boer, C., Klaas, N., Sapion, H., Eisenmann, H., Larsson, P.-O., Braun, J., Sethi, R., & Bastiaens, L. (2014). Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane. Journal of Contaminant Hydrology, 164, 88–99.

    Article  CAS  Google Scholar 

  • Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15, 785–790.

    Article  CAS  Google Scholar 

  • Wang, C.-B., & Zhang, W.-X. (1997). Synthesizing nanoscale Iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156.

    Article  CAS  Google Scholar 

  • Wei, Y. T., Wu, S. C., Chou, C. M., Che, C. H., Tsai, S. M., & Lien, H. L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research, 44, 131–140.

    Article  CAS  Google Scholar 

  • Wu, Y., Slater, L., Versteeg, R., & LaBrecque, D. (2008). A comparison of the low frequency electrical signatures of iron oxide versus calcite precipitation in granular zero valent iron columns. Journal of Contaminant Hydrology, 95, 154–167.

    Article  CAS  Google Scholar 

  • Wu, Y., Slater, L. D., & Korte, N. (2005). Effect of precipitation on low frequency electrical properties of zerovalent iron columns. Environmental Science and Technology, 39, 9197–9204.

    Article  CAS  Google Scholar 

  • Wu, Y., Slaters, L. D., & Korte, N. (2006). Low frequency electrical properties of corroded iron barrier cores. Environmental Science and Technology, 40, 2254–2261.

    Article  CAS  Google Scholar 

  • Wu, Y., Versteeg, R., Slater, L., & LaBrecque, D. (2009). Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions. Journal of Contaminant Hydrology, 106, 131–143.

    Article  CAS  Google Scholar 

  • Xiu, Z.-M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. J. (2010a). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environmental Science & Technology, 44, 7647–7651.

    Article  CAS  Google Scholar 

  • Xiu, Z.-M., Jin, Z.-H., Li, T.-L., Mahendra, S., Lowry, G. V., & Alvarez, P. J. J. (2010b). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.

    Article  CAS  Google Scholar 

  • Yan, W., Herzing, A. A., Kiely, C. J., & Zhang, W.-X. (2010). Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118, 96–104.

    Article  CAS  Google Scholar 

  • Yao, K.-M., Habibian, M. T., & O'Melia, C. R. (1971). Water and waste water filtration. Concepts and applications. Environmental Science & Technology, 5, 1105–1112.

    Article  CAS  Google Scholar 

  • Zaa, C. L. Y., McLean, J. E., Dupont, R. R., Norton, J. M., & Sorensen, D. L. (2010). Dechlorinating and iron reducing bacteria distribution in a TCE-contaminated aquifer. Ground Water Monit. Remediat., 30, 46–57. https://doi.org/10.1111/j.1745-6592.2009.01268.x.

    Article  Google Scholar 

  • Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., Papadopoulos, K., & John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42, 8871–8876.

    Article  CAS  Google Scholar 

  • Zhang, L., & Manthiram, A. (1997). Chains composed of nanosize metal particles and identifying the factors driving their formation. Applied Physics Letters, 70, 2469–2471.

    Article  CAS  Google Scholar 

  • Zhong, L., Oostrom, M., Wietsma, T. W., & Covert, M. A. (2008). Enhanced remedial amendment delivery through fluid viscosity modifications: Experiments and numerical simulations. Journal of Contaminant Hydrology, 101, 29–41.

    Article  CAS  Google Scholar 

  • Zhou, L., Thanh, T. L., Gong, J., Kim, J.-H., Kim, E.-J., & Chang, Y.-S. (2014). Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere, 104, 155–161.

    Article  CAS  Google Scholar 

  • Zhu, L., Lin, H.-Z., Qi, J.-Q., Xu, X.-Y., & Qi, H.-Y. (2012). Effect of H2 on reductive transformation of p-ClNB in a combined ZVI–anaerobic sludge system. Water Research, 46, 6291–6299.

    Article  CAS  Google Scholar 

  • Zhu, L., Lin, H., Qi, J., & Xu, X. (2013). Enhanced transformation and dechlorination of p-chloronitrobenzene in the combined ZVI–anaerobic sludge system. Environmental Science and Pollution Research, 20, 6119–6127.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris M. Kocur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kocur, C.M., Sleep, B.E., O’Carroll, D.M. (2019). Moving into the Third Decade of Nanoscale Zero-Valent Iron (NZVI) Development: Best Practices for Field Implementation. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_7

Download citation

Publish with us

Policies and ethics