Skip to main content

Abstract

This chapter provides an overview of NZVI types used to date for environmental restoration. The particle types are introduced systematically from bare NZVI to the manifold modifications leading to NZVI-containing composites or emulsions. Properties of these NZVI types which are important for the intended use as water treatment reagent and methods for their characterization are compiled. For each of the main NZVI groups – bare and bimetallic NZVI, polymer-modified NZVI, supported NZVI and emulsified NZVI, approved synthesis strategies and resulting NZVI properties are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai, X., Ye, Z. F., Qu, Y. Z., Li, Y. F., & Wang, Z. Y. (2009). Immobilization of nanoscale Fe-0 in and on PVA microspheres for nitrobenzene reduction. Journal of Hazardous Materials, 172(2–3), 1357–1364.

    Article  CAS  Google Scholar 

  • Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G. V., & Merly, C. (2014). A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites. Available via: http://www.nanorem.eu/Displaynews.aspx?ID=525

  • Berge, N. D., & Ramsburg, C. A. (2009). Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environmental Science & Technology, 43(13), 5060–5066.

    Article  CAS  Google Scholar 

  • Bezbaruah, A. N., Krajangpan, S., Chisholm, B. J., Khan, E., & Bermudez, J. J. E. (2009). Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of Hazardous Materials, 166(2–3), 1339–1343.

    Article  CAS  Google Scholar 

  • Bezbaruah, A. N., Shanbhogue, S. S., Simsek, S., & Khan, E. (2011). Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. Journal of Nanoparticle Research, 13(12), 6673–6681.

    Article  CAS  Google Scholar 

  • Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D., & Iglesias, M. (2014). Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 243, 14–23.

    Article  CAS  Google Scholar 

  • Blacha, A., Krukiewicz, K., & Zak, J. (2011). The covalent grafting of polymers to the solid surface. CHEMIK, 65(1), 11–19.

    CAS  Google Scholar 

  • Bleyl, S., Kopinke, F.-D., & Mackenzie, K. (2012). Carbo-Iron®-synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment. Chemical Engineering Journal, 191, 588–595.

    Article  CAS  Google Scholar 

  • Bleyl, S., Mackenzie, K., Georgi, A., & Kopinke, F. –D. (2015). Nanoiron and Carbo-Iron® particle transport in aquifer sediments – Targeted deposition. In: Conference proceedings, AquaConSoil 2015. Copenhagen.

    Google Scholar 

  • Boudart, M., Delbouille, A., Dumesic, J. A., Khammouma, S., & Topsoe, H. (1975). Surface, catalytic and magnetic-properties of small Iron particles. 1. Preparation and characterization of samples. Journal of Catalysis, 37(3), 486–502.

    Article  CAS  Google Scholar 

  • Buchau, A., Rucker, W. M., de Boer, C. V., & Klaas, N. (2010). Inductive detection and concentration measurement of nano sized zero valent iron in the subsurface. IET Science, Measurement and Technology, 4(6), 289–297.

    Article  CAS  Google Scholar 

  • Bystrzejewski, M. (2011). Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles. Journal of Solid State Chemistry, 184(6), 1492–1498.

    Article  CAS  Google Scholar 

  • Cantrell, K. J., Kaplan, D. I., & Gilmore, T. J. (1997). Injection of colloidal Fe-0 particles in sand with shear-thinning fluids. Journal of Environmental Engineering, ASCE, 123(8), 786–791.

    Article  CAS  Google Scholar 

  • Cao, J. S., Elliott, D., & Zhang, W. X. (2003). Nanoscale iron particles for perchlorate reduction. Abstracts of Papers of the American Chemical Society, 225, U972–U972.

    Google Scholar 

  • Cao, H., Li, R., Gui, Q. J., Wang, X. H., & Bin, X. B. (2007). Characteristics and microstructure of graphite encapsulated iron nanoparticles. Journal of Wuhan University of Technology, 22(2), 214–217.

    Article  CAS  Google Scholar 

  • Capek, I. (2004). Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science, 110(1–2), 49–74.

    Article  CAS  Google Scholar 

  • Chen, A. A., Vannice, M. A., & Phillips, J. (1987). Effect of support pretreatments on carbon-supported Fe particles. The Journal of Physical Chemistry, 91(24), 6257–6269.

    Article  CAS  Google Scholar 

  • Choi, C. J., Dong, X. L., & Kim, B. K. (2001). Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation. Scripta Materialia, 44(8–9), 2225–2229.

    Article  CAS  Google Scholar 

  • Cirtiu, C. M., Raychoudhury, T., Ghoshal, S., & Moores, A. (2011). Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers. Colloids and Surfaces A, 390(1–3), 95–104.

    Article  CAS  Google Scholar 

  • Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43(15), 3717–3726.

    Article  CAS  Google Scholar 

  • Cook, S. M. (2009). Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites. Jackson State University. https://clu-in.org/download/studentpapers/zero-valent-iron-cook.pdf

  • Dalla Vecchia, E., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science & Technology, 43(23), 8942–8947.

    Article  CAS  Google Scholar 

  • Dror, I., Jacov, O. M., Cortis, A., & Berkowitz, B. (2012). Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron. ACS Applied Materials & Interfaces, 4(7), 3416–3423.

    Article  CAS  Google Scholar 

  • Dumitrache, F., Morjan, I., Alexandrescu, R., Morjan, R. E., Voicu, I., Sandu, I., Soare, I., Ploscaru, M., Fleaca, C., Ciupina, V., Prodan, G., Rand, B., Brydson, R., & Woodword, A. (2004). Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diamond and Related Materials, 13(2), 362–370.

    Article  CAS  Google Scholar 

  • Eglal, M. M., & Ramamurthy, A. S. (2014). Nanofer ZVI: Morphology, particle characteristics, kinetics, and applications. Journal of Nanomaterials, 29, 1–11.

    Article  CAS  Google Scholar 

  • Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science & Technology, 35(24), 4922–4926.

    Article  CAS  Google Scholar 

  • Elliott, D. W., Lien, H.-L., & Zhang, W.-X. (2012). Nanoscale zero-valent iron (nZVI)for site remediation. In G. E. Fryxell & G. Cao (Eds.), Environmental applications of nanomaterials: Synthesis, sorbents and sensors. World Scientific. https://doi.org/10.1142/9781860948572_0002

    Chapter  Google Scholar 

  • Fang, Y. X., & Al-Abed, S. R. (2008). Dechlorination kinetics of monochlorobiphenyls by Fe/Pd: Effects of solvent, temperature, and PCB concentration. Applied Catalysis B: Environmental, 78(3–4), 371–380.

    Article  CAS  Google Scholar 

  • Fernandez-Pacheco, R., Arruebo, M., Marquina, C., Ibarra, R., Arbiol, J., & Santamaria, J. (2006). Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology, 17(5), 1188–1192.

    Article  CAS  Google Scholar 

  • Gastone, F., Tosco, T., & Sethi, R. (2014). Guar gum solutions for improved delivery of iron particles in porous media (part 1): Porous medium rheology and guar gum-induced clogging. Journal of Contaminant Hydrology, 166, 23–33.

    Article  CAS  Google Scholar 

  • Golas, P., Matyjaszewski, K., Lowry, G. V., & Tilton, R. D. (2010). Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir, 26(22), 16890–16900.

    Article  CAS  Google Scholar 

  • Grittini, C., Malcomson, M., Fernando, Q., & Korte, N. (1995). Rapid dechlorination of polychlorinated-biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 29(11), 2898–2900.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. Y. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41(17), 6216–6221.

    Article  CAS  Google Scholar 

  • Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671–8677.

    Article  CAS  Google Scholar 

  • Hoch, L. B., Mack, E. J., Hydutsky, B. W., Hershman, J. M., Skluzacek, I. M., & Mallouk, T. E. (2008). Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology, 42(7), 2600–2605.

    Article  CAS  Google Scholar 

  • Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, 1(5), 482–501.

    Article  CAS  Google Scholar 

  • Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M., & Mallouk, T. E. (2007). Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environmental Science & Technology, 41(18), 6418–6424.

    Article  CAS  Google Scholar 

  • Jabeen, H., Kemp, K. C., & Chandra, V. (2013). Synthesis of nano zerovalent iron nanoparticles – Graphene composite for the treatment of lead contaminated water. Journal of Environmental Management, 130, 429–435.

    Article  CAS  Google Scholar 

  • Jia, H. Z., & Wang, C. Y. (2013). Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: Reactivity and stability. Environmental Technology, 34(1), 25–33.

    Article  CAS  Google Scholar 

  • Johnson, R. L., Nurmi, J. T., Johnson, G. S. O., Fan, D. M., Johnson, R. L. O., Shi, Z. Q., Salter-Blanc, A. J., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent Iron. Environmental Science & Technology, 47(3), 1573–1580.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291–1298.

    Article  CAS  Google Scholar 

  • Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117(12), 1823–1831.

    Article  Google Scholar 

  • Keenan, C. R., & Sedlak, D. L. (2008). Factors affecting the yield of oxidants from the reaction of manoparticulate zero-valent iron and oxygen. Environmental Science & Technology, 42(4), 1262–1267.

    Article  CAS  Google Scholar 

  • Kharisov, B. I., Dias, H. V. R., Kharissova, O. V., Jimenez-Perez, V. M., Perez, B. O., & Flores, B. M. (2012). Iron-containing nanomaterials: Synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325–9358.

    Article  CAS  Google Scholar 

  • Kharissova, O. V., Dias, H. V. R., Kharisov, B. I., Perez, B. O., & Perez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4), 240–248.

    Article  CAS  Google Scholar 

  • Kirschling, T. L., Golas, P. L., Unrine, J. M., Matyjaszewski, K., Gregory, K. B., Lowry, G. V., & Tilton, R. D. (2011). Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environmental Science & Technology, 45(12), 5253–5259.

    Article  CAS  Google Scholar 

  • Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K. M., Martac, E., Matheis, A., Paar, H., Schaffer, A., Schell, H., Schiwy, A., Schmidt, K. R., Strutz, T. J., Thummler, S., Tiehm, A., & Braun, J. (2014). Nanoscale zero-valent iron flakes for groundwater treatment. Environment and Earth Science, 72(9), 3339–3352.

    Article  CAS  Google Scholar 

  • Kong, Q. S., Guo, C. X., Wang, B. B., Ji, Q., & Xia, Y. Z. (2011). A facile preparation of carbon-supported nanoscale zero-valent Iron fibers. Materials Science Forum, 688, 349–352.

    Article  CAS  Google Scholar 

  • Kopinke, F. D., Speichert, G., Mackenzie, K., & Hey-Hawkins, E. (2016). Reductive dechlorination in water: Interplay of sorption and reactivity. Applied Catalysis B: Environmental, 181, 747–753.

    Article  CAS  Google Scholar 

  • Korte, N. E., Zutman, J. L., Schlosser, R. M., Liang, L., Gu, B., & Fernando, Q. (2000). Field application of palladized iron for the dechlorination of trichloroethene. Waste Management, 20(8), 687–694.

    Article  CAS  Google Scholar 

  • Kosmulski, M. (2014). The pH dependent surface charging and points of zero charge. VI. Update. Journal of Colloid and Interface Science, 426, 209–212.

    Article  CAS  Google Scholar 

  • Krajangpan, S., Jarabek, L., Jepperson, J., Chisholm, B., & Bezbaruah, A. (2008). Polymer modified iron nanoparticles for environmental remediation. Polymer Preprints, 49, 921–922.

    CAS  Google Scholar 

  • Krajangpan, S., Kalita, H., Chisholm, B. J., & Bezbaruah, A. N. (2012). Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: Dispersibility and contaminant treatability. Environmental Science & Technology, 46(18), 10130–10136.

    CAS  Google Scholar 

  • Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, Z., & O’Carroll, D. M. (2013). A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science & Technology, 47(13), 7332–7340.

    Article  CAS  Google Scholar 

  • Kustov, L. M., Finashina, E. D., Shuvalova, E. V., Tkachenko, O. P., & Kirichenko, O. A. (2011). Pd-Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environment International, 37(6), 1044–1052.

    Article  CAS  Google Scholar 

  • Li, L., Fan, M. H., Brown, R. C., Van Leeuwen, J. H., Wang, J. J., Wang, W. H., Song, Y. H., & Zhang, P. Y. (2006a). Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Critical Reviews in Environmental Science and Technology, 36(5), 405–431.

    Article  CAS  Google Scholar 

  • Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006b). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31(4), 111–122.

    Article  CAS  Google Scholar 

  • Li, S. L., Yan, W. L., & Zhang, W. X. (2009). Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 11(10), 1618–1626.

    Article  CAS  Google Scholar 

  • Li, Y. C., Jin, Z. H., & Li, T. L. (2012). A novel and simple method to synthesize SiO2-coated Fe nanocomposites with enhanced Cr (VI) removal under various experimental conditions. Desalination, 288, 118–125.

    Article  CAS  Google Scholar 

  • Li, J., Bhattacharjee, S., & Ghoshal, S. (2015). The effects of viscosity of carboxymethyl cellulose on aggregation and transport of nanoscale zerovalent iron. Colloids and Surfaces A, 481, 451–459.

    Article  CAS  Google Scholar 

  • Lien, H. L., & Zhang, W. X. (1999). Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering, 125(11), 1042–1047.

    Article  CAS  Google Scholar 

  • Lien, H. L., & Zhang, W. X. (2007). Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Applied Catalysis B: Environmental, 77(1–2), 110–116.

    Article  CAS  Google Scholar 

  • Ling, X. F., Li, J. S., Zhu, W., Zhu, Y. Y., Sun, X. Y., Shen, J. Y., Han, W. Q., & Wang, L. J. (2012). Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene. Chemosphere, 87(6), 655–660.

    Article  CAS  Google Scholar 

  • Liu, Y. Q., & Lowry, G. V. (2006). Effect of particle age (Fe-o content) and solution pH on NZVI reactivity: H-2 evolution and TCE dechlorination. Environmental Science & Technology, 40(19), 6085–6090.

    Article  CAS  Google Scholar 

  • Liu, Y. Q., Choi, H., Dionysiou, D., & Lowry, G. V. (2005a). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17(21), 5315–5322.

    Article  CAS  Google Scholar 

  • Liu, Y. Q., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005b). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39(5), 1338–1345.

    Article  CAS  Google Scholar 

  • Liu, X. W., Wang, D. S., & Li, Y. D. (2012). Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 7(5), 448–466.

    Article  CAS  Google Scholar 

  • Liu, W. J., Qian, T. T., & Jiang, H. (2014). Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical Engineering Journal, 236, 448–463.

    Article  CAS  Google Scholar 

  • Lowry, G. V. (2007). Nanomaterials for groundwater remediation. In M. R. Wiesner & J.-Y. Bottero (Eds.), Environmental nanotechnology. New York: The McGraw-Hill Companies.

    Google Scholar 

  • Lowry, G. V., & Johnson, K. M. (2004). Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 38(19), 5208–5216.

    Article  CAS  Google Scholar 

  • Lowry, G. V., Hill, R., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., Nobbmann, U., Syare, P., & Rumble, J. (2016). Guidance for measuring, interpreting, and reporting zeta potential measurements for environmental nanotechnology and Nanotoxicology. Environmental Science: Nano, 3, 953–965. https://doi.org/10.1039/C6EN00136J.

    Article  CAS  Google Scholar 

  • Lv, X. S., Xue, X. Q., Jiang, G. M., Wu, D. L., Sheng, T. T., Zhou, H. Y., & Xu, X. H. (2014). Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. Journal of Colloid and Interface Science, 417, 51–59.

    Article  CAS  Google Scholar 

  • Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. The Science of the Total Environment, 445, 1–8.

    Article  CAS  Google Scholar 

  • Mackenzie, K., Schierz, A., Georgi, A., & Kopinke, F. D. (2008). Colloidal activated carbon and carbo-iron – Novel materials for in-situ groundwater treatment. Global NEST Journal, 10(1), 54–61.

    Google Scholar 

  • Mackenzie, K., Bleyl, S., Georgi, A., & Kopinke, F. D. (2012). Carbo-Iron – An Fe/AC composite – As alternative to nano-iron for groundwater treatment. Water Research, 46(12), 3817–3826.

    Article  CAS  Google Scholar 

  • Mackenzie, K., Bleyl, S., Kopinke, F.-D., Doose, H., & Bruns, J. (2016). Carbo-Iron as improvement of the nanoiron technology: From laboratory design to the field test. Science Total Environment. https://doi.org/10.1016/j.scitotenv.2015.07.107.

    Article  CAS  Google Scholar 

  • Martinez-Baez, E., Dominguez, J., Ortega-Pijeira, M. S., Tejeda-Mazola, Y., Borroto, J., & Rivera-Denis, A. (2015). Synthesis and evaluation of ferragels as prospective solid Tc-99m radiotracers. Journal of Radioanalytical and Nuclear Chemistry, 304(1), 267–272.

    Article  CAS  Google Scholar 

  • McCurrie, R. A. (1994). Ferromagnetic materials. London: Academic Press.

    Google Scholar 

  • Miehr, R., Tratnyek, P. G., Bandstra, J. Z., Scherer, M. M., Alowitz, M. J., & Bylaska, E. J. (2004). Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environmental Science & Technology, 38(1), 139–147.

    Article  CAS  Google Scholar 

  • Mueller, N. C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environemental Science and Pollution Research, 19(2), 550–558.

    Article  CAS  Google Scholar 

  • Nadagouda, M. N., & Lytle, D. A. (2011). Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies. Journal of Nanotechnology, 972486, 1–8.

    Google Scholar 

  • Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C. M., Linehan, J. C., Matson, D. W., Penn, R. L., & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39(5), 1221–1230.

    Article  CAS  Google Scholar 

  • Pennell, K. D., Pope, G. A., & Abriola, L. M. (1996). Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environmental Science & Technology, 30(4), 1328–1335.

    Article  CAS  Google Scholar 

  • Pereira, M. C., Coelho, F. S., Nascentes, C. C., Fabris, J. D., Araujo, M. H., Sapag, K., Oliveira, L. C. A., & Lago, R. M. (2010). Use of activated carbon as a reactive support to produce highly active-regenerable Fe-based reduction system for environmental remediation. Chemosphere, 81(1), 7–12.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41(1), 284–290.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Kim, H. J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10(5), 795–814.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe-0 nanoparticles in sand columns. Environmental Science & Technology, 43(13), 5079–5085.

    Article  CAS  Google Scholar 

  • Phenrat, T., Fagerlund, F., Illangasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe-0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45(14), 6102–6109.

    Article  CAS  Google Scholar 

  • Ponder, S. M., & Mallouk, T. F. (2004). Powerful reductant for decontamination of groundwater and surface streams. U.S. Patent No. 6,689,485.

    Google Scholar 

  • Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564–2569.

    Article  CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L. F., Shuh, D. K., & Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 13(2), 479–486.

    Article  CAS  Google Scholar 

  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W. S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39(5), 1309–1318.

    Article  CAS  Google Scholar 

  • Ramos, M. A. V., Yan, W., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: Understanding the significance of the core-shell structure. Journal of Physical Chemistry C, 113(33), 14591–14594.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Naja, G., & Ghoshal, S. (2010). Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Journal of Contaminant Hydrology, 118(3–4), 143–151.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2012). Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Research, 46(6), 1735–1744.

    Article  CAS  Google Scholar 

  • Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44(9), 3455–3461.

    Article  CAS  Google Scholar 

  • Robinson, I., Zacchini, S., Tung, L. D., Maenosono, S., & Thanh, N. T. K. (2009). Synthesis and characterization of magnetic nanoalloys from bimetallic carbonyl clusters. Chemistry of Materials, 21(13), 3021–3026.

    Article  CAS  Google Scholar 

  • Rónavári, A., Balázs, M., Tolmacsov, P., Molnár, C., Kiss, I., Kukovecz, Á., & Kónya, Z. (2016). Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria. Water Research, 95, 165–173.

    Article  CAS  Google Scholar 

  • Rose, J., Thill, A., & Brant, J. (2007). Methods for structural and chemical characterization of nanomaterials. In M. R. Wiesner & J.-Y. Bottero (Eds.), Environmental nanotechnology: Applications and impacts of nanomaterials (pp. 105–154). New York: McGraw-Hill.

    Google Scholar 

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyiaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5(12), 2489–2494.

    Article  CAS  Google Scholar 

  • Saleh, N., Sirk, K., Liu, Y. Q., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24(1), 45–57.

    Article  CAS  Google Scholar 

  • Sarathy, V., Tratnyek, P. G., Nurmi, J. T., Baer, D. R., Amonette, J. E., Chun, C. L., Penn, R. L., & Reardon, E. J. (2008). Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity. Journal of Physical Chemistry C, 112(7), 2286–2293.

    Article  CAS  Google Scholar 

  • Schrick, B., Blough, J. L., Jones, A. D., & Mallouk, T. E. (2002). Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials, 14(12), 5140–5147.

    Article  CAS  Google Scholar 

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16(11), 2187–2193.

    Article  CAS  Google Scholar 

  • Scott, T. B., Dickinson, M., Crane, R. A., Riba, O., Hughes, G. M., & Allen, G. C. (2010). The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. Journal of Nanoparticle Research, 12(5), 1765–1775.

    Article  CAS  Google Scholar 

  • Simon, J. A. (2015). Editor’s perspective-an in situ revelation: First retard migration, then treat. Remediation Journal, 25(2), 1–7.

    Article  Google Scholar 

  • Sohn, K., Kang, S. W., Ahn, S., Woo, M., & Yang, S. K. (2006). Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation. Environmental Science & Technology, 40(17), 5514–5519.

    Article  CAS  Google Scholar 

  • Soukupova, J., Zboril, R., Medrik, I., Filip, J., Safarova, K., Ledl, R., Mashlan, M., Nosek, J., & Cernik, M. (2015). Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: Direct surface modification and site application. Chemical Engineering Journal, 262, 813–822.

    Article  CAS  Google Scholar 

  • Stevenson, S. A., Goddard, S. A., Arai, M., & Dumesic, J. A. (1989). Effects of preparation variables on particle-size and morphology for carbon-supported and alumina-supported metallic iron samples. The Journal of Physical Chemistry, 93(5), 2058–2065.

    Article  CAS  Google Scholar 

  • Su, C. M., Puls, R. W., Krug, T. A., Watling, M. T., O’Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2012). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46(16), 5071–5084.

    Article  CAS  Google Scholar 

  • Su, C. M., Puls, R. W., Krug, T. A., Watling, M. T., O’Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2013). Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years. Water Research, 47(12), 4095–4106.

    Article  CAS  Google Scholar 

  • Sun, Y. P., Li, X. Q., Cao, J. S., Zhang, W. X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1–3), 47–56.

    Article  CAS  Google Scholar 

  • Sun, Q., Feitz, A. J., Guan, J., & Waite, T. D. (2008). Comparison of the reactivity of nanosized zero-valent iron (nZVI) particles produced by borohydride and dithionite reduction of iron salts. Nano, 3(5), 341–349.

    Article  CAS  Google Scholar 

  • Sunkara, B., Zhan, J. J., He, J. B., McPherson, G. L., Piringer, G., & John, V. T. (2010). Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials & Interfaces, 2(10), 2854–2862.

    Article  CAS  Google Scholar 

  • Sunkara, B., Zhan, J. J., Kolesnichenko, I., Wang, Y. Q., He, J. B., Holland, J. E., McPherson, G. L., & John, V. T. (2011). Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Langmuir, 27(12), 7854–7859.

    Article  CAS  Google Scholar 

  • Sunkara, B., Su, Y., Zhan, J. J., He, J. B., Mcpherson, G. L., & John, V. T. (2015). Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Frontiers of Environmental Science & Engineering, 9(5), 939–947.

    Article  CAS  Google Scholar 

  • Suslick, K. S., Fang, M. M., & Hyeon, T. (1996). Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 118(47), 11960–11961.

    Article  CAS  Google Scholar 

  • Tang, H., Zhu, D. Q., Li, T. L., Kong, H. N., & Chen, W. (2011). Reductive dechlorination of activated carbon-adsorbed trichloroethylene by zero-valent iron: Carbon as electron shuttle. Journal of Environmental Quality, 40(6), 1878–1885.

    Article  CAS  Google Scholar 

  • Tiraferri, A., Chen, K. L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324(1–2), 71–79.

    Article  CAS  Google Scholar 

  • Tokoro, H., Fujii, S., & Oku, T. (2004). Iron nanoparticles coated with graphite nanolayers and carbon nanotubes. Diamond and Related Materials, 13(4–8), 1270–1273.

    Article  CAS  Google Scholar 

  • Toshima, N., & Yonezawa, T. (1998). Bimetallic nanoparticles – novel materials for chemical and physical applications. New Journal of Chemistry, 22(11), 1179–1201.

    Article  CAS  Google Scholar 

  • Tseng, H. H., Su, J. G., & Liang, C. J. (2011). Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. Journal of Hazardous Materials, 192(2), 500–506.

    Article  CAS  Google Scholar 

  • Tufenkji, N., & Elimelech, M. (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38(2), 529–536.

    Article  CAS  Google Scholar 

  • U.S. EPA. (2011). Selected sites using or testing nanoparticles for remediation. https://clu-in.org/download/remed/nano-site-list.pdf

  • Uegami, M., Kawano, J., Okita, T., Fujii, Y., Okinaka, K., & Kakuyua, K. (2003). Iron particles for purifying contaminated soil or ground water. Process for producing the iron particles, purifying agent comprising the iron particles, process for producing the purifying agent and method of purifying contaminated soil or ground water. Toda Kogyo Corp., US Patent Application 2003/0217974 A1.

    Google Scholar 

  • Wan, J. J., Wan, J. Q., Ma, Y. W., Huang, M. Z., Wang, Y., & Ren, R. (2013). Reactivity characteristics of SiO2-coated zero-valent iron nanoparticles for 2,4-dichlorophenol degradation. Chemical Engineering Journal, 221, 300–307.

    Article  CAS  Google Scholar 

  • Wang, Z. Q. (2013). Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chemistry & Engineering, 1(12), 1551–1554.

    Article  CAS  Google Scholar 

  • Wang, Z. H., & Acosta, E. (2013). Formulation design for target delivery of iron nanoparticles to TCE zones. Journal of Contaminant Hydrology, 155, 9–19.

    Article  CAS  Google Scholar 

  • Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31(7), 2154–2156.

    Article  CAS  Google Scholar 

  • Wang, Q. L., Kanel, S. R., Park, H., Ryu, A., & Choi, H. (2009). Controllable synthesis, characterization, and magnetic properties of nanoscale zerovalent iron with specific high Brunauer-Emmett-Teller surface area. Journal of Nanoparticle Research, 11(3), 749–755.

    Article  CAS  Google Scholar 

  • Wang, Q., Lee, S., & Choi, H. (2010). Aging study on the structure of Fe-0-nanoparticles: Stabilization, characterization, and reactivity. Journal of Physical Chemistry C, 114(5), 2027–2033.

    Article  CAS  Google Scholar 

  • Wang, C., Xu, Z., Ding, G., Wang, X., Zhao, M., Ho, S. S. H., & Li, Y. (2016). Comprehensive study on the removal of chromate from aqueous solution by synthesized kaolin supported nanoscale zero-valent iron. Desalination and Water Treatment 57(11), 5065–5078.

    Article  CAS  Google Scholar 

  • Wei, Z. Q., Liu, L. G., Yang, H., Zhang, C. R., & Feng, W. J. (2011a). Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma. Transactions of Nonferrous Metals Society of China, 21(9), 2026–2030.

    Article  CAS  Google Scholar 

  • Wei, Z. Q., Wang, X. Y., & Yang, H. (2011b). Preparation of carbon-encapsulated Fe core-shell nanostructures by confined arc plasma. Materials Science Forum, 688, 245–249.

    Article  CAS  Google Scholar 

  • Wiberg, N., Holleman, A. F., & Wiberg, E. E. (2001). Holleman-Wiberg’s inorganic chemistry. New York: Academic Press.

    Google Scholar 

  • Xu, Y., & Zhang, W. X. (2000). Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Industrial and Engineering Chemistry Research, 39(7), 2238–2244.

    Article  CAS  Google Scholar 

  • Xu, F. Y., Deng, S. B., Xu, J., Zhang, W., Wu, M., Wang, B., Huang, J., & Yu, G. (2012). Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environmental Science & Technology, 46(8), 4576–4582.

    Article  CAS  Google Scholar 

  • Yan, W. L., Ramos, M. A. V., Koel, B. E., & Zhang, W. X. (2012). As(III) sequestration by iron nanoparticles: Study of solid-phase redox transformations with X-ray photoelectron spectroscopy. Journal of Physical Chemistry C, 116(9), 5303–5311.

    Article  CAS  Google Scholar 

  • Yan, W. L., Lien, H. L., Koel, B. E., & Zhang, W. X. (2013). Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environmental Science: Processes & Impacts, 15(1), 63–77.

    CAS  Google Scholar 

  • Yang, G. C. C., & Chang, Y. I. (2011). Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Separation and Purification Technology, 79(2), 278–284.

    Article  CAS  Google Scholar 

  • Yang, N. L., Desai, A., Mahajan, D., & Rafailovich, M. H. (2003). Synthesis and characterization of nano-sized iron particles on a polystyrene support as potential Fischer-Tropsch catalysts. Abstracts of Papers of the American Chemical Society, 226, U565–U565.

    Google Scholar 

  • Yuan, M. L., Tao, J. H., Yan, G. J., Tan, M. Y., & Qiu, G. Z. (2010). Preparation and characterization of Fe/SiO2 core/shell nanocomposites. Transactions of Nonferrous Metals Society of China, 20(4), 632–636.

    Article  CAS  Google Scholar 

  • Zhan, J. J., Zheng, T. H., Piringer, G., Day, C., McPherson, G. L., Lu, Y. F., Papadopoulos, K., & John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42(23), 8871–8876.

    Article  CAS  Google Scholar 

  • Zhan, J. J., Sunkara, B., Le, L., John, V. T., He, J. B., McPherson, G. L., Piringer, G., & Lu, Y. F. (2009). Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 43(22), 8616–8621.

    Article  CAS  Google Scholar 

  • Zhan, J. J., Kolesnichenko, I., Sunkara, B., He, J. B., McPherson, G. L., Piringer, G., & John, V. T. (2011). Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 45(5), 1949–1954.

    Article  CAS  Google Scholar 

  • Zhang, H., Jin, Z. H., Han, L., & Qin, C. H. (2006). Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Transactions of Nonferrous Metals Society of China, 16, S345–S349.

    Article  Google Scholar 

  • Zhang, Y., Li, Y. M., & Zheng, X. M. (2011). Removal of atrazine by nanoscale zero valent iron supported on organobentonite. The Science of the Total Environment, 409(3), 625–630.

    Article  CAS  Google Scholar 

  • Zhang, Y. Y., Jiang, H., Zhang, Y., & Xie, J. F. (2013). The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal, 229, 412–419.

    Article  CAS  Google Scholar 

  • Zhao, X., Lv, L., Pan, B. C., Zhang, W. M., Zhang, S. J., & Zhang, Q. X. (2011). Polymer-supported nanocomposites for environmental application: A review. Chemical Engineering Journal, 170(2–3), 381–394.

    Article  CAS  Google Scholar 

  • Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.

    Article  CAS  Google Scholar 

  • Zheng, T. H., Zhan, J. J., He, J. B., Day, C., Lu, Y. F., Mcpherson, G. L., Piringer, G., & John, V. T. (2008). Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation. Environmental Science & Technology, 42(12), 4494–4499.

    Article  CAS  Google Scholar 

  • Zhou, T., Li, Y. Z., & Lim, T. T. (2010). Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: Comparisons with other bimetallic systems, kinetics and mechanism. Separation and Purification Technology, 76(2), 206–214.

    Article  CAS  Google Scholar 

  • Zhu, B. W., & Lim, T. T. (2007). Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration. Environmental Science & Technology, 41(21), 7523–7529.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Mackenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mackenzie, K., Georgi, A. (2019). NZVI Synthesis and Characterization. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_2

Download citation

Publish with us

Policies and ethics