Skip to main content

Improving the Reactivity of ZVI and NZVI Toward Various Metals and Metal(loid)s with Weak Magnetic Field

  • Chapter
  • First Online:
Nanoscale Zerovalent Iron Particles for Environmental Restoration
  • 935 Accesses

Abstract

This chapter provides an overview of employing weak magnetic field (WMF) and premagnetization to improve the reactivity of ZVI toward various metal(loid)s. The rate constants of metal(loid)s sequestration by ZVI were increased by 1.1–383.7- and 1.2–12.2-fold due to the application of WMF and premagnetization, respectively. The mechanisms of WMF-induced improvement in contaminant sequestration by ZVI are also summarized. Finally, this chapter identifies the current knowledge gaps and future research needs of WMF/ZVI system for environmental application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, A., & Tratnyek, P. G. (1996). Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology, 30(1), 153–160.

    Article  CAS  Google Scholar 

  • Ansaf, K. V. K., Ambika, S., & Nambi, I. M. (2016). Performance enhancement of zero valent iron based systems using depassivators: Optimization and kinetic mechanisms. Water Research, 102, 436–444.

    Article  CAS  Google Scholar 

  • Aziz, F., Pandey, P., Chandra, M., Khare, A., Rana, D. S., & Mavani, K. R. (2014). Surface morphology, ferromagnetic domains and magnetic anisotropy in BaFeO3−δ thin films: Correlated structure and magnetism. Journal of Magnetism and Magnetic Materials, 356(0), 98–102.

    Article  CAS  Google Scholar 

  • Bataineh, H., Pestovsky, O., & Bakac, A. (2012). pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chemical Science, 3(5), 1594–1599.

    Article  CAS  Google Scholar 

  • Chen, L., Jin, S., Fallgren, P. H., Swoboda-Colberg, N. G., Liu, F., & Colberg, P. J. S. (2012). Electrochemical depassivation of zero-valent iron for trichloroethene reduction. Journal of Hazardous Materials, 239–240(0), 265–269.

    Article  CAS  Google Scholar 

  • Dai, C. M., Zhou, Z., Zhou, X. F., & Zhang, Y. L. (2014). Removal of Sb(III) and Sb(V) from aqueous solutions using nZVI. Water, Air, and Soil Pollution, 225(1), 12.

    Article  CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189.

    Article  CAS  Google Scholar 

  • Dorjee, P., Arnarasiriwardena, D., & Xing, B. S. (2014). Antimony adsorption by zero-valent iron nanoparticles (nZVI): Ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study. Microchemical Journal, 116, 15–23.

    Article  CAS  Google Scholar 

  • Feng, P., Guan, X. H., Sun, Y. K., Choi, W. Y., Qin, H. J., Wang, J. M., Qiao, J. L., & Li, L. N. (2015). Weak magnetic field accelerates chromate removal by zero-valent iron. Journal of Environmental Sciences (China), 31, 175–183.

    Article  CAS  Google Scholar 

  • Fujiwara, M., Mitsuda, K., & Tanimoto, Y. (2006). Movement and diffusion of paramagnetic ions in a magnetic field. Journal of Physical Chemistry B, 110(28), 13965–13969.

    Article  CAS  Google Scholar 

  • Furukawa, Y., Kim, J. W., Watkins, J., & Wilkin, R. T. (2002). Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology, 36(24), 5469–5475.

    Article  CAS  Google Scholar 

  • Geiger, C. L., Ruiz, N. E., Clausen, C. A., Reinhart, D. R., & Quinn, J. W. (2002). Ultrasound pretreatment of elemental iron: Kinetic studies of dehalogenation reaction enhancement and surface effects. Water Research, 36, 1342–1350.

    Article  CAS  Google Scholar 

  • Gheju, M. (2011). Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water, Air, and Soil Pollution, 222(1-4), 103–148.

    Article  CAS  Google Scholar 

  • Ghosh, N., Mandal, B. K., & Mohan Kumar, K. (2012). Magnetic memory effect in chelated zero valent iron nanoparticles. Journal of Magnetism and Magnetic Materials, 324(22), 3839–3841.

    Article  CAS  Google Scholar 

  • Gillham, R. W., & Ohannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32(6), 958–967.

    Article  CAS  Google Scholar 

  • Guan, X. H., Du, J. S., Meng, X. G., Sun, Y. K., Sun, B., & Hu, Q. H. (2012). Application of titanium dioxide in arsenic removal from water: A review. Journal of Hazardous Materials, 215, 1–16.

    Article  CAS  Google Scholar 

  • Guan, X., Jiang, X., Qiao, J., & Zhou, G. (2015a). Decomplexation and subsequent reductive removal of EDTA-chelated CuII by zero-valent iron coupled with a weak magnetic field: Performances and mechanisms. Journal of Hazardous Materials, 300, 688–694.

    Article  CAS  Google Scholar 

  • Guan, X. H., Sun, Y. K., Qin, H. J., Li, J. X., Lo, I. M., He, D., & Dong, H. R. (2015b). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014). Water Research, 75, 224–248.

    Article  CAS  Google Scholar 

  • Guo, X. J., Wu, Z. J., He, M. C., Meng, X. G., Jin, X., Qiu, N., & Zhang, J. (2014). Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure. Journal of Hazardous Materials, 276, 339–345.

    Article  CAS  Google Scholar 

  • Guo, X., Yang, Z., Dong, H., Guan, X., Ren, Q., Lv, X., & Jin, X. (2016). Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water. Water Research, 88, 671–680.

    Article  CAS  Google Scholar 

  • Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science & Technology, 37(12), 2734–2742.

    Article  CAS  Google Scholar 

  • Hung, H. M., & Hoffmann, M. R. (1998). Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environmental Science & Technology, 32(19), 3011–3016.

    Article  CAS  Google Scholar 

  • Jiang, X., Qiao, J., Lo, I. M. C., Wang, L., Guan, X., Lu, Z., Zhou, G., & Xu, C. (2015). Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron. Journal of Hazardous Materials, 283(0), 880–887.

    Article  CAS  Google Scholar 

  • Johnson, T. L., Scherer, M. M., & Tratnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 30(8), 2634–2640.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science & Technology, 42(19), 7424–7430.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Ruettimann, T., & Hug, S. I. (2009a). Response to comment on “pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water”. Environmental Science & Technology, 43(10), 3980–3981.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2009b). Response to comment on “pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zerovalent iron in aerated water”. Environmental Science & Technology, 43(1), 234–234.

    Article  CAS  Google Scholar 

  • Lai, K. C. K., & Lo, I. M. C. (2008). Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environmental Science and Technology, 42(4), 1238–1244.

    Article  CAS  Google Scholar 

  • Lee, C., & Sedlak, D. L. (2008). Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environmental Science & Technology, 42(22), 8528–8533.

    Article  CAS  Google Scholar 

  • Lee, J., Kim, J., & Choi, W. (2007). Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environmental Science & Technology, 41(9), 3335–3340.

    Article  CAS  Google Scholar 

  • Leuz, A. K., Monch, H., & Johnson, C. A. (2006). Sorption of Sb(III) and Sb(V) to goethite: Influence on Sb(III) oxidation and mobilization. Environmental Science & Technology, 40(23), 7277–7282.

    Article  CAS  Google Scholar 

  • Li, J., Bao, H., Xiong, X., Sun, Y., & Guan, X. (2015a). Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field. Separation and Purification Technology, 151, 276–283.

    Article  CAS  Google Scholar 

  • Li, J., Qin, H., & Guan, X. (2015b). Premagnetization for enhancing the reactivity of multiple zerovalent iron samples toward various contaminants. Environmental Science & Technology, 49(24), 14401–14408.

    Article  CAS  Google Scholar 

  • Li, J. X., Shi, Z., Ma, B., Zhang, P. P., Jiang, X., Xiao, Z. J., & Guan, X. H. (2015c). Improving the reactivity of zerovalent iron by taking advantage of its magnetic memory: Implications for arsenite removal. Environmental Science & Technology, 49(17), 10581–10588.

    Article  CAS  Google Scholar 

  • Liang, L., Yang, W., Guan, X., Li, J., Xu, Z., Wu, J., Huang, Y., & Zhang, X. (2013). Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Research, 47(15), 5846–5855.

    Article  CAS  Google Scholar 

  • Liang, L., Sun, W., Guan, X., Huang, Y., Choi, W., Bao, H., Li, L., & Jiang, Z. (2014a). Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 49, 371–380.

    Article  CAS  Google Scholar 

  • Liang, L. P., Guan, X. H., Shi, Z., Li, J. L., Wu, Y. N., & Tratnyek, P. G. (2014b). Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron. Environmental Science & Technology, 48(11), 6326–6334.

    Article  CAS  Google Scholar 

  • Liang, L., Guan, X., Huang, Y., Ma, J., Sun, X., Qiao, J., & Zhou, G. (2015). Efficient selenate removal by zero-valent iron in the presence of weak magnetic field. Separation and Purification Technology, 156(Part 3), 1064–1072.

    Article  CAS  Google Scholar 

  • Lin, C. J., & Lo, S. L. (2005). Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system. Water Research, 39(6), 1037–1046.

    Article  CAS  Google Scholar 

  • Lioubashevski, O., Katz, E., & Willner, I. (2004). Magnetic field effects on electrochemical processes: A theoretical hydrodynamic model. Journal of Physical Chemistry B, 108(18), 5778–5784.

    Article  CAS  Google Scholar 

  • Liu, H., Li, G., Qu, J., & Liu, H. (2007). Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound. Journal of Hazardous Materials, 144(1-2), 180–186.

    Article  CAS  Google Scholar 

  • Lu, X., Li, M., Tang, C., Feng, C., & Liu, X. (2012). Electrochemical depassivation for recovering Fe0 reactivity by Cr(VI) removal with a permeable reactive barrier system. Journal of Hazardous Materials, 213–214(0), 355–360.

    Article  CAS  Google Scholar 

  • Mackenzie, P. D., Horney, D. P., & Sivavec, T. M. (1999). Mineral precipitation and porosity losses in granular iron columns. Journal of Hazardous Materials, 68(1-2), 1–17.

    Article  CAS  Google Scholar 

  • Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002). Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 36(24), 5455–5461.

    Article  CAS  Google Scholar 

  • Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28(12), 2045–2053.

    Article  CAS  Google Scholar 

  • Miehr, R., Tratnyek, P. G., Bandstra, J. Z., Scherer, M. M., Alowitz, M. J., & Bylaska, E. J. (2004). Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environmental Science & Technology, 38(1), 139–147.

    Article  CAS  Google Scholar 

  • Mitsunobu, S., Takahashi, Y., Terada, Y., & Sakata, M. (2010). Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides. Environmental Science & Technology, 44(10), 3712–3718.

    Article  CAS  Google Scholar 

  • Mondal, K., Jegadeesan, G., & Lalvani, S. B. (2004). Removal of selenate by Fe and NiFe nanosized particles. Industrial & Engineering Chemistry Research, 43(16), 4922–4934.

    Article  CAS  Google Scholar 

  • Mylon, S. E., Sun, Q. A., & Waite, T. D. (2010). Process optimization in use of zero valent iron nanoparticles for oxidative transformations. Chemosphere, 81(1), 127–131.

    Article  CAS  Google Scholar 

  • Neumann, A., Kaegi, R., Voegelin, A., Hussam, A., Munir, A. K. M., & Hug, S. J. (2013). Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environmental Science & Technology, 47(9), 4544–4554.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2008). A critical review on the process of contaminant removal in Fe-0-H2O systems. Environmental Technology, 29(8), 909–920.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2009a). An analysis of the evolution of reactive species in Fe-0/H2O systems. Journal of Hazardous Materials, 168(2-3), 1626–1631.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2009b). Comment on "pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water". Environmental Science & Technology, 43(1), 233–233.

    Article  CAS  Google Scholar 

  • Noubactep, C., Meinrath, G., Dietrich, P., Sauter, M., & Merkel, B. J. (2005). Testing the suitability of zerovalent iron materials for reactive walls. Environmental Chemistry, 2(1), 71–76.

    Article  CAS  Google Scholar 

  • Nurmi, J. T., & Tratnyek, P. G. (2008). Electrochemical studies of packed iron powder electrodes: Effects of common constituents of natural waters on corrosion potential. Corrosion Science, 50(1), 144–154.

    Article  CAS  Google Scholar 

  • Nurmi, J. T., Bandstra, J. Z., & Tratnyek, P. G. (2004). Packed powder electrodes for characterizing the reactivity of granular iron in borate solutions. Journal of the Electrochemical Society, 151(6), B347–B353.

    Article  CAS  Google Scholar 

  • Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243–259.

    Article  CAS  Google Scholar 

  • Pang, S. Y., Jiang, J., Ma, J., Pang, S. Y., & Ouyang, F. (2009). New insight into the oxidation of arsenite by the reaction of zerovalent iron and oxygen. Comment on “pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water”. Environmental Science & Technology, 43(10), 3978–3979.

    Article  CAS  Google Scholar 

  • Pang, S. Y., Jiang, J., & Ma, J. (2011). Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: Evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environmental Science & Technology, 45(1), 307–312.

    Article  CAS  Google Scholar 

  • Peipmann, R., Lange, R., Kubeil, C., Mutschke, G., & Bund, A. (2010). Magnetic field effects on the mass transport at small electrodes studied by voltammetry and magnetohydrodynamic impedance measurements. Electrochimica Acta, 56(1), 133–138.

    Article  CAS  Google Scholar 

  • Prasad, P., Das, C., & Golder, A. K. (2011). Reduction of Cr (VI) to Cr (III) and removal of total chromium from wastewater using scrap iron in the form of zerovalent iron (ZVI): Batch and column studies. The Canadian Journal of Chemical Engineering, 89(6), 1575–1582.

    Article  CAS  Google Scholar 

  • Ragsdale, S. R., Grant, K. M., & White, H. S. (1998). Electrochemically generated magnetic forces. Enhanced transport of a paramagnetic redox species in large, nonuniform magnetic fields. Journal of the American Chemical Society, 120(51), 13461–13468.

    Article  CAS  Google Scholar 

  • Ritter, K., Odziemkowski, M. S., & Gillham, R. W. (2002). An in situ study of the role of surface films on granular iron in the permeable iron wall technology. Journal of Contaminant Hydrology, 55(1-2), 87–111.

    Article  CAS  Google Scholar 

  • Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A. K., Funke, H., & Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70(13), 3299–3312.

    Article  CAS  Google Scholar 

  • Sedlak, D. L., & Andren, A. W. (1991). Oxidation of chlorobenzene with Fenton’s reagent. Environmental Science & Technology, 25(4), 777–782.

    Article  CAS  Google Scholar 

  • Stern, M., & Geary, A. L. (1957). Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society, 104(1), 56–63.

    Article  CAS  Google Scholar 

  • Su, C. M., & Puls, R. W. (2001). Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Environmental Science & Technology, 35(22), 4562–4568.

    Article  CAS  Google Scholar 

  • Sueptitz, R., Koza, J., Uhlemann, M., Gebert, A., & Schultz, L. (2009). Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions. Electrochimica Acta, 54(8), 2229–2233.

    Article  CAS  Google Scholar 

  • Sueptitz, R., Tschulik, K., Uhlemann, M., Schultz, L., & Gebert, A. (2011). Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions. Corrosion Science, 53(10), 3222–3230.

    Article  CAS  Google Scholar 

  • Sun, Y. K., Guan, X. H., Wang, J. M., Meng, X. G., Xu, C. H., & Zhou, G. M. (2014). Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: An XAFS investigation. Environmental Science & Technology, 48(12), 6850–6858.

    Article  CAS  Google Scholar 

  • Sun, Y., Hu, Y., Huang, T., Li, J., Qin, H., & Guan, X. (2017). Combined Effect of Weak Magnetic Fields and Anions on Arsenite Sequestration by Zerovalent Iron: Kinetics and Mechanisms. Environ. Sci. Technol., 51(7), 3742–3750.

    Article  CAS  Google Scholar 

  • Tang, C., Huang, Y. H., Zeng, H., & Zhang, Z. (2014). Promotion effect of Mn 2+ and Co 2+ on selenate reduction by zero-valent iron. Chemical Engineering Journal, 244, 97–104.

    Article  CAS  Google Scholar 

  • Tanimoto, Y., Katsuki, A., Yano, H., & Watanabe, S. (1997). Effect of high magnetic field on the silver deposition from its aqueous solution. Journal of Physical Chemistry A, 101(40), 7359–7363.

    Article  CAS  Google Scholar 

  • Triszcz, J. M., Port, A., & Einschlag, F. S. G. (2009). Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chemical Engineering Journal, 150(2-3), 431–439.

    Article  CAS  Google Scholar 

  • Turcio-Ortega, D., Fan, D. M., Tratnyek, P. G., Kim, E. J., & Chang, Y. S. (2012). Reactivity of Fe/FeS nanoparticles: Electrolyte composition effects on corrosion electrochemistry. Environmental Science & Technology, 46(22), 12484–12492.

    Article  CAS  Google Scholar 

  • Wang, C., & Zhang, W. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 94(18), 9602–9607.

    Google Scholar 

  • Waskaas, M., & Kharkats, Y. I. (1999). Magnetoconvection phenomena: A mechanism for influence of magnetic fields on electrochemical processes. Journal of Physical Chemistry B, 103(23), 4876–4883.

    Article  CAS  Google Scholar 

  • Waskaas, M., & Kharkats, Y. I. (2001). Effect of magnetic fields on convection in solutions containing paramagnetic ions. Journal of Electroanalytical Chemistry, 502(1-2), 51–57.

    Article  CAS  Google Scholar 

  • Xi, J. H., He, M. C., & Lin, C. Y. (2011). Adsorption of antimony(III) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition. Microchemical Journal, 97(1), 85–91.

    Article  CAS  Google Scholar 

  • Xie, Y., & Cwiertny, D. M. (2010). Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Environmental Science & Technology, 44(22), 8649–8655.

    Article  CAS  Google Scholar 

  • Xu, C., Zhang, B., Zhu, L., Lin, S., Sun, X., Jiang, Z., & Tratnyek, P. G. (2016a). Sequestration of antimonite by zerovalent iron: Using weak magnetic field effects to enhance performance and characterize reaction mechanisms. Environmental Science & Technology, 50(3), 1483–1491.

    Article  CAS  Google Scholar 

  • Xu, H., Sun, Y., Li, J., Li, F., & Guan, X. (2016b). Aging of zerovalent iron in synthetic groundwater: X-ray photoelectron spectroscopy depth profiling characterization and depassivation with uniform magnetic field. Environmental Science & Technology, 50(15), 8214–8222.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Sun, Y., Liang, L., Guan, X. (2019). Improving the Reactivity of ZVI and NZVI Toward Various Metals and Metal(loid)s with Weak Magnetic Field. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_12

Download citation

Publish with us

Policies and ethics