Skip to main content

Electromagnetic Induction of Nanoscale Zerovalent Iron for Enhanced Thermal Dissolution/Desorption and Dechlorination of Chlorinated Volatile Organic Compounds

  • Chapter
  • First Online:
Nanoscale Zerovalent Iron Particles for Environmental Restoration

Abstract

A major problem plaguing the success of in situ dechlorination using NZVI is the slow rate of dissolution of chlorinated volatile organic compounds (CVOCs) from dense nonaqueous phase liquid (DNAPL) or slow desorption of CVOCs from soil in the aqueous phase. This is because the dechlorination using NZVI is surface mediated; therefore, contaminants must be dissolved to transport to the NZVI surface. For this reason, any action to enhance the DNAPL dissolution or desorption of CVOCs from the soil and DNAPL can speed the reaction rate and improve the electron utilization efficiency of the remediation. This chapter summarizes the state of knowledge about using a low-frequency (LF) electromagnetic field (EMF) (150 kHz) with NZVI to enhance the CVOC degradation rate in a DNAPL system and in a soil and groundwater system via thermal-enhanced CVOC dissolution or desorption followed by enhanced dechlorination using NZVI. NZVI is a ferromagnetic particle capable of magnetic induction heating under an applied LF EMF. The heat generated can speed up the dechlorination reaction and can promote DNAPL dissolution or desorption of contaminants from soils. The most recent work on using this novel approach is summarized as a proof of concept. The CVOC degradation kinetics in groundwater and in soil with groundwater as well as in a DNAPL system by NZVI both with and without LF EMF were compared to quantify the benefits of using LF EMF for enhanced thermal dissolution and magnetically enhanced NZVI corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bañobre-López, M., Teijeiro, A., & Rivas, J. (2013). Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 18(6), 397–400.

    Article  Google Scholar 

  • Berge, N. D., & Ramsburg, C. A. (2010). Iron-mediated trichloroethene reduction within nonaqueous phase liquid. Journal of Contaminant Hydrology, 118(3–4), 105–116.

    Article  CAS  Google Scholar 

  • Bishop, E. J., Fowler, D. E., Skluzacek, J. M., Seibel, E., & Mallouk, T. E. (2010). Anionic homopolymers efficiently target zerovalent iron particles to hydrophobic contaminants in sand columns. Environmental Science & Technology, 44(23), 9069–9074.

    Article  CAS  Google Scholar 

  • Dalla Vecchia, E., Coisson, M., Appino, C., Vinai, F., & Sethi, R. (2009). Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. Journal of Nanoscience and Nanotechnology, 9(5), 3210–3218.

    Article  CAS  Google Scholar 

  • Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H.-J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131(1–4), 9–28.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46(1), 29–34.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44(7), 2360–2370.

    Article  CAS  Google Scholar 

  • Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zero-valent iron for source remediation - a case study. Remediation Journal, 16, 57–77.

    Article  Google Scholar 

  • Jiang, X., Qiao, J., Lo, I. M. C., Wang, L., Guan, X., Lu, Z., Zhou, G., & Xu, C. (2015). Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zerovalent iron. Journal of Hazardous Materials, 283, 880–887.

    Article  CAS  Google Scholar 

  • Johnson, R. L., Nurmi, J. T., O’Brien Johnson, G. S., Fan, D., O’Brien Johnson, R. L., Shi, Z., Salter-Blanc, A. J., Tratnyek, P. G., & Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmental Science & Technology, 47(3), 1573–1580.

    Article  CAS  Google Scholar 

  • Kitazawa, K., Hirota, N., Ikezoe, Y., Uetake, H., Kaihatsu, T., & Takayama, T. (2002). Magneto-convection processes observed in non-magnetic liquid–gas system. Riken Review, 44, 156–158.

    CAS  Google Scholar 

  • Kocur, C. M., Lomheim, L., Boparai, H. K., Chowdhury, A. I., Weber, K. P., Austrins, L. M., Edwards, E. A., Sleep, B. E., & O’Carroll, D. M. (2015). Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environmental Science & Technology, 49(14), 8648–8656.

    Article  CAS  Google Scholar 

  • Li, Z., Kawashita, M., Araki, N., Mitsumori, M., Hiraoka, M., & Doi, M. (2010). Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. Materials Science and Engineering: C, 30(7), 990–996.

    Article  CAS  Google Scholar 

  • Liang, L., Sun, W., Guan, X., Huang, Y., Choi, W., Bao, H., Li, L., & Jiang, Z. (2014). Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 49, 371–380.

    Article  CAS  Google Scholar 

  • Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41(22), 7881–7887.

    Article  CAS  Google Scholar 

  • Martin, J. E., Herzing, A. A., Yan, W., Li, X. Q., Koel, B. E., Kiely, C. J., & Zhang, W. X. (2008). Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir, 24(8), 4329–4334.

    Article  CAS  Google Scholar 

  • Miller, C. T., Poirer-McNeill, M. M., & Mayer, A. S. (1990). Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resources Research, 26(11), 2783–2796.

    Article  Google Scholar 

  • O’Carroll, D. M., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.

    Article  Google Scholar 

  • Pablico-Lansigan, M. H., Situa, S. F., & Samia, A. C. S. (2013). Magnetic particle imaging: Advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale, 5, 4040–4055.

    Article  CAS  Google Scholar 

  • Phenrat, T., & Kumloet, I. (2016). Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Water Research, 107, 19–28.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41(1), 284–290.

    Article  CAS  Google Scholar 

  • Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43(5), 1507–1514.

    Article  CAS  Google Scholar 

  • Phenrat, T., Schoenfelder, D., Losi, M., Yi, J., Peck, S. A., & Lowry, G. V. (2010). In C. L. Geiger & K. M. Carvalho-Knighton (Eds.), Environmental applications of nanoscale and microscale reactive metal particles (pp. 183–202). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Phenrat, T., Crimi, M., Illanagasekare, T., & Lowry, G. V. (2011a). In M. Ram, E. S. Andreescu, & D. Hanming (Eds.), Nanotechnology for environmental decontamination (pp. 271–322). New York: McGraw-Hill Publisher.

    Google Scholar 

  • Phenrat, T., Fagerlund, F., Illanagasekare, T., Lowry, G. V., & Tilton, R. D. (2011b). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45(14), 6102–6109.

    Article  CAS  Google Scholar 

  • Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2015). Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science and Pollution Research, 25(8), 7157–7169.

    Article  Google Scholar 

  • Phenrat, T., Thongboot, T., & Lowry, G. V. (2016). Electromagnetic Induction of Zerovalent Iron (ZVI) powder and nanoscale Zerovalent Iron (NZVI) particles enhances Dechlorination of trichloroethylene in contaminated groundwater and soil: Proof of concept. Environmental Science & Technology, 50(2), 872–880.

    Article  CAS  Google Scholar 

  • Powers, S. E., Abriola, L. M., & Weber, W. J., Jr. (1992). An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates. Water Resources Research, 28(10), 2691–2705.

    Article  CAS  Google Scholar 

  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., & Coon, C. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39(5), 1309–1318.

    Article  CAS  Google Scholar 

  • Rosická, D., & Šembera, J. (2011). Assessment of influence of magnetic forces on aggregation of zero-valent Iron nanoparticles. Nanoscale Research Letters, 6, 10.

    Article  Google Scholar 

  • Saba, T., & Illangasekare, T. H. (2000). Effect of groundwater flow dimensionality on mass transfer from entrapped nonaqueous phase liquid contaminants. Water Resources Research, 36(4), 971–980.

    Article  CAS  Google Scholar 

  • Sakulchaicharoen, N., O’Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology, 118(3–4), 117–127.

    Article  CAS  Google Scholar 

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5(12), 2489–2494.

    Article  CAS  Google Scholar 

  • Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24(1), 45–57.

    Article  CAS  Google Scholar 

  • Su, C., Puls, R. W., Krug, T. A., Watling, M. T., O’Hara, S. K., Quinn, J. W., & Ruiz, N. W. (2012). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46(16), 5071–5084.

    Article  CAS  Google Scholar 

  • Taghavy, A., Costanza, J., Pennell, K. D., & Abrio, L. M. (2010). Effectiveness of nanoscale zero-valent iron for treatment of a PCE–DNAPL source zone. Journal of Contaminant Hydrology, 118(3–4), 128–142.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1(2), 44–48.

    Article  Google Scholar 

  • Waskaas, M., & Kharkats, Y. I. (1999). Magnetoconvection phenomena: A mechanism for influence of magnetic fields on electrochemical processes. The Journal of Physical Chemistry. B, 103, 4876–4883.

    Article  CAS  Google Scholar 

  • Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., Papadopoulos, K., & John, V. T. (2009). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42(23), 8871–8876.

    Article  Google Scholar 

  • Zhang, W.-X., Wang, C.-B., & Lien, H.-L. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40, 387–395.

    Article  CAS  Google Scholar 

  • Zhang, M., He, F., Zhao, D., & Hao, X. (2011). Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Research, 45(7), 2401–2414.

    Article  CAS  Google Scholar 

  • Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for research funding from (1) the Thailand Research Fund (TRF) (MRG5680129); (2) the National Nanotechnology Center (Thailand), a member of the National Science and Technology Development Agency, through grant number P-11-00989; and (3) the National Research Council (R2556B070).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phenrat, T., Lowry, G.V. (2019). Electromagnetic Induction of Nanoscale Zerovalent Iron for Enhanced Thermal Dissolution/Desorption and Dechlorination of Chlorinated Volatile Organic Compounds. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_11

Download citation

Publish with us

Policies and ethics