Skip to main content

Cholera Toxin Analysis to Vaccine Design

  • Chapter
  • First Online:
Bioinformation Discovery
  • 578 Accesses

Abstract

The cholera toxin (CT) from Vibrio cholerae is responsible for the clinical symptoms of cholera. CT is a hetero-hexamer (AB5) protein complex consisting of a CTA subunit with a pentamer (B5) of CTB. The AB5 hexamer complex is associated with the pathogenesis of the disease. Therefore, it is of interest to study the structure of CT analyzing the nature of interfaces between CTA and CTB to characterize mutations in known serogroups. The importance of mutations in these interfaces among known serogroups is relevant in the design of an effective vaccine candidate for cholera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansaruzzaman M et al (2004) Cholera in Mozambique, variant of Vibrio cholerae. Emerg Infect Dis 10:2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bag PK et al (2008) Putative virulence traits and pathogenicity of Vibrio cholerae non-O1, non-O139 isolates from surface waters in Kolkata, India. Appl Environ Microbiol 74:5635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagchi K et al (1993) Epidemic of diarrhea caused by Vibrio cholerae non-O1 that produced heat-stable toxin among Khmers in a camp in Thailand. J Clin Microbiol 31:1315

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattarcharya SK et al (1993) Clinical profile of acute diarrhoea cases infected with the new epidemic strain of Vibrio cholerae O139: designation of the disease as cholera. J Infect 27:11

    Article  Google Scholar 

  • Burnette WN et al (1994) AB5 ADP-ribosylating toxins: comparative anatomy and physiology. Structure 2:151

    Article  CAS  PubMed  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A 75:2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S et al (2000) Virulence genes in environmental strains of Vibrio cholerae. Appl Environ Microbiol 66:4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S et al (2009) Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 47:1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2007) The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun 75:2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun J et al (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 106:15442

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalsgaard A et al (1995) Characterization of Vibrio cholerae non-O1 serogroups obtained from an outbreak of diarrhea in Lima, Peru. J Clin Microbiol 33:2715

    PubMed  PubMed Central  CAS  Google Scholar 

  • De Haan L, Hirst TR (2004) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms. Mol Membr Biol 21:77

    Article  CAS  PubMed  Google Scholar 

  • Domenighini M et al. (2000) Immunogenic detoxified mutants of cholera toxin and of the toxin LT, their preparation and their use for the preparation of vaccines. US Patent 6,149,919

    Google Scholar 

  • Finkelstein RA et al (1987) Epitopes of the cholera family of enterotoxins. Rev Infect Dis 9:544

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RA. Owen P, Foster TS (1988) Cholera, the cholera enterotoxins, and the cholera enterotoxin-related enterotoxin family. Immuno-chemical and molecular genetic analysis of bacterial pathogens. p 85–102

    Google Scholar 

  • Ghosh C et al (1997) A search for cholera toxin (CT), toxin coregulated pilus (TCP), the regulatory element ToxR and other virulence factors in non-01/non-0139 Vibrio cholerae. Microb Pathog 22:199

    Article  CAS  PubMed  Google Scholar 

  • Gill DM et al (1976) The arrangement of subunits in cholera toxin. Biochemistry 15:1242

    Article  CAS  PubMed  Google Scholar 

  • Green BA et al. (2008) Wyeth Holdings Corporation and The Regents of the University of Colorado, assignee. Mutant forms of cholera holotoxin as an adjuvant. US Patent 7,361,355

    Google Scholar 

  • Jiang S et al (2003) Prevalence of cholera toxin genes (ctxA and zot) among non-O1/O139 Vibrio cholerae strains from Newport Bay, California. Appl Environ Microbiol 69:7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamble TK et al (2000) Clinical profile of non-O1 strain-O139 of Vibrio cholerae in the region of Ambajogai, Maharashtra. J Assoc Physicians India 48:505

    PubMed  CAS  Google Scholar 

  • Kaper JB et al (1995) Cholera. Clin Microbiol Rev 8:48

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar P et al (2009) A large cholera outbreak due to a new cholera toxin variant of the Vibrio cholerae O1 El Tor biotype in Orissa, Eastern India. J Med Microbiol 58:234

    Article  CAS  PubMed  Google Scholar 

  • Lai CY et al (1976) Cholera toxin subunit that binds ganglioside GM1 on the cell surface. J Infect Dis 133:S23

    Article  Google Scholar 

  • Merritt EA et al (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 3:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra RK et al (2001) Molecular characterisation of rough variants of Vibrio cholerae isolated from hospitalised patients with diarrhoea. J Med Microbiol 50:268

    Article  CAS  PubMed  Google Scholar 

  • Moss J, Vaughan M (1991) Activation of cholera toxin and Escherichia coli heat-labile enterotoxins by ADP-ribosylation factors, a family of 20 kDa guanine nucleotide-binding proteins. Mol Microbiol 5:2621

    Article  CAS  PubMed  Google Scholar 

  • Moss J et al (1994) Activation of cholera toxin by ADP-ribosylation factors. Methods Enzymol 235:640

    Article  CAS  PubMed  Google Scholar 

  • Nair GB et al (1988) Toxins profiles of Vibrio cholerae non-O1, non-O139 from environmental sources in Calcutta, India. Appl Environ Microbiol 54:3180

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nair GB et al (2002) New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 40:3296

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair GB et al (2006) Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. J Clin Microbiol 44:4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen BM et al (2009) Cholera outbreaks caused by an altered Vibrio cholerae O1 El Tor biotype strain producing classical cholera toxin B in Vietnam in 2007 to 2008. J Clin Microbiol 47:1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtomo N et al (1976) Size and structure of the cholera toxin molecule and its subunits. J Infect Dis 133:S31

    Article  Google Scholar 

  • Olsvik O et al (1993) Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol 31:22

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pizza M et al. (2009) Novartis vaccines and diagnostics SRL, assignee. Immunogenic detoxified mutants of cholera toxin. US Patent 7,632,513

    Google Scholar 

  • Ramamurthy T et al (1993) Virulence patterns of Vibrio cholerae non-O1 strains isolated from hospitalised patients with acute diarrhoea in Calcutta, India. J Med Microbiol 39:310

    Article  CAS  PubMed  Google Scholar 

  • Rivera IN et al (2001) Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol 67:2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raychoudhuri A et al (2009) Classical ctxB in Vibrio cholerae O1, Kolkata, India. Emerg Infect Dis 15(1):131–132. https://doi.org/10.3201/eid1501.080543

  • Sack DA et al (2004) Cholera. Lancet 363:223

    Article  CAS  PubMed  Google Scholar 

  • Safa A et al (2005) Genomic relatedness of the new Matlab variants of Vibrio cholerae O1 to the classical and El Tor biotypes as determined by pulsed-field gel electrophoresis. J Clin Microbiol 43:1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safa A et al (2006) Genetic characteristics of Matlab variants of Vibrio cholerae O1 that are hybrids between classical and El Tor biotypes. J Med Microbiol 55:1563

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A et al (2002) Vibrio pathogenicity island and cholera toxin genetic element-associated virulence genes and their expression in non-O1 non-O139 strains of Vibrio cholerae. Infect Immun 70:4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamini G et al (2011) Structural inferences for Cholera toxin mutations in Vibrio cholerae. Bioinformation 6(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Chaturvedi AN (2006) Prevalence of virulence genes (ctxA, stn, OmpW and tcpA) among non-O1 Vibrio cholerae isolated from fresh water environment. Int J Hyg Environ Health 209:521

    Article  CAS  PubMed  Google Scholar 

  • Sharma C et al (1998) Molecular analysis of non-O1, non-O139 Vibrio cholerae associated with an unusual upsurge in the incidence of cholera-like disease in Calcutta, India. J Clin Microbiol 36:756

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shimada T et al (1994) Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 28:175

    Article  Google Scholar 

  • Sixma TK et al (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351:371

    Article  CAS  PubMed  Google Scholar 

  • Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van Heyningen S et al (1974) Cholera toxin: interaction of subunits with ganglioside GM1. Science 183:656

    Article  Google Scholar 

  • Vanden BD et al (2007) Clustal W and Clustal X version 2.0. Int J Biochem Cell Biol 39:1771

    Article  CAS  Google Scholar 

  • Zhang RG et al (1995) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251:563

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kangueane, P. (2018). Cholera Toxin Analysis to Vaccine Design. In: Bioinformation Discovery. Springer, Cham. https://doi.org/10.1007/978-3-319-95327-4_8

Download citation

Publish with us

Policies and ethics