Skip to main content

Eukaryotic Genes, Functions, Genomes, Design, and Evolution

  • Chapter
  • First Online:
  • 593 Accesses

Abstract

The draft sequences for a number of completely sequenced genomes (both prokaryotes and eukaryotes) are now available in the public domain. This allows the comparison of these genomes using parameters such as genome size, gene number, chromosomes (size and length), gene structures (single exon and multiple exon), junk (noncoding intergenic region) DNA, introns, and exons along with their content and arrangement. An understanding of genome content in different species organisms has to be established in the context of molecular evolution through genome comparison. The study and comparison of genomes to establish evolutionary relationship are computationally exhaustive and mathematically challenging. This chapter highlights some of the issues associated with the study of eukaryotic genes, genomes, function, design, and evolution. It should be noted that our current understanding of genomes in perspective of their known size to current design, organism level function, and evolution is limited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bagavathi S, Malathi R (1996) Introns and protein evolution—an analysis of the exon/intron organisation of actin genes. FEBS Lett 392:63–65

    Article  CAS  PubMed  Google Scholar 

  • Boudet N, Aubourg S, Toffano-Nioche C et al (2001) Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res 11:2101–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brett D, Hanke J, Lehmann G et al (2000) EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett 474:83–86

    Article  CAS  PubMed  Google Scholar 

  • Brett D, Pospisil H, Valcarcel J et al (2002) Alternative splicing and genome complexity. Nat Genet 30:29–30

    Article  CAS  PubMed  Google Scholar 

  • Brocke KS, Neu-Yilik G, Gehring NH et al (2002) The human intronless melanocortin 4-receptor gene is NMD insensitive. Hum Mol Genet 11:331–335

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (1999) Many G-protein coupled receptors are encoded by retro-genes. Trends Genet 15:304–305

    Article  CAS  PubMed  Google Scholar 

  • Burset M, Seledtsov IA, Solovyev V (2001) SpliceDB: database of canonical and non-canonical mammalian splice sites. Nucleic Acids Res 29:255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith T (1985) Selfish DNA and the origin of introns. Nature 315:283–284

    Article  CAS  PubMed  Google Scholar 

  • Christoffels A, van Gelder A, Greyling G et al (2001) STACK: sequence tag alignment and consensus knowledgebase. Nucleic Acids Res 29:234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coghlan A, Wolfe KH (2004) Origins of recently gained introns in Caenorhabditis. Proc Natl Acad Sci U S A 101:11362–11367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft L, Schandorff S, Clark F et al (2000) ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat Genet 24:340–341

    Article  CAS  PubMed  Google Scholar 

  • Demchyshyn L, Sunahara RK, Miller K et al (1992) A human serotonin 1D receptor variant (5HT1D beta) encoded by an intronless gene on chromosome 6. Proc Natl Acad Sci U S A 89:5522–5526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch M, Long M (1999) Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res 27:3219–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dibb NJ, Newman AJ (1989) Evidence that introns arose at proto-splice sites. EMBO J 8:2015–2021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doolittle WF (1978) Genes-in-pieces: were they ever together? Nature 272:581–582

    Article  Google Scholar 

  • Dorit RL, Schoenbach L, Gilbert W (1990) How big is the universe of exons? Science 250:1377–1382

    Article  CAS  PubMed  Google Scholar 

  • Dralyuk I, Brudno M, Gelfand MS et al (2000) ASDB: database of alternatively spliced genes. Nucleic Acids Res 28:296–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorov A, Suboch G, Bujakov M et al (1992) Analysis of nonuniformity in intron phase distribution. Nucleic Acids Res 20:2553–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorov A, Merican AF, Gilbert W (2002) Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc Natl Acad Sci U S A 99:16128–16133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49:5–6

    Article  CAS  PubMed  Google Scholar 

  • Gentles AJ, Karlin S (1999) Why are human G-protein coupled receptors predominantly intronless? Trends Genet 15:47–49

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501–502

    Article  CAS  Google Scholar 

  • Grabowski PJ, Black DL (2001) Alternative RNA splicing in the nervous system. Prog Neurobiol 65:289–308

    Article  CAS  PubMed  Google Scholar 

  • Hankeln T, Friedl H, Ebersberger I et al (1997) A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205:151–160

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JD (1988) A survey on intron and exon lengths. Nucleic Acids Res 16:9893–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill A, Sorscher E (2004) Common structural patterns in human genes. Bioinformatics 20:1632–1635

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Chen YT, Lai JJ et al (2002) PALS db: putative alternative splicing database. Nucleic Acids Res 30:186–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Horng J, Lee C et al (2003) ProSplicer: a database of putative alternative splicing information derived from protein, mRNA and expressed sequence tag sequence data. Genome Biol 4:R29

    Article  PubMed  PubMed Central  Google Scholar 

  • Kan Z, Rouchka EC, Gish WR et al (2001) Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res 11:889–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobilka BKT, Frielle HG, Dohlman MA et al (1987) Delineation of the intronless nature of the genes for the human and hamster beta 2-adrenergic receptor and their putative promoter regions. J Biol Chem 262:7321–7327

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Atanelov L, Modrek B et al (2003) ASAP: the alternative splicing annotation project. Nucleic Acids Res 31:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang F, Holt I, Pertea G et al (2000) Gene index analysis of the human genome estimates approximately 120,000 genes. Nat Genet 25:239–240

    Article  CAS  PubMed  Google Scholar 

  • Makalowski W (2003) Not junk after all. Science 300:1246–1247

    Article  CAS  PubMed  Google Scholar 

  • Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30:13–19

    Article  CAS  PubMed  Google Scholar 

  • Modrek B, Resch A, Grasso C et al (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29:2850–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mount SM, Burks C, Hertz G et al (1992) Splicing signals in Drosophila: intron size, information content and consensus sequences. Nucleic Acids Res 20:4255–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD, Logsdon JM (1991) The recent origins of introns. Curr Opin Genet Dev 1:470–477

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio LA (2003) Insights from human/mouse genome comparisons. Mamm Genome 14:429–436

    Article  CAS  PubMed  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P et al (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    Article  CAS  PubMed  Google Scholar 

  • Perumal BS, Sakharkar KR, Chow VTK et al (2005) Intron position conservation across eukaryotic lineages in tubulin genes. Front Biosci 10:2412–2419

    Article  CAS  PubMed  Google Scholar 

  • Philips AV, Cooper TA (2000) RNA processing and human disease. Cell Mol Life Sci 57:235–249

    Article  CAS  PubMed  Google Scholar 

  • Pospisil H, Herrmann A, Bortfeldt RH et al (2004) EASED: extended alternatively spliced EST database. Nucleic Acids Res 32:D70–D74

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampazzo AF, Pivotto G, Occhi N et al (2000) Characterization of C14orf4, a novel intronless human gene containing a polyglutamine repeat, mapped to Human single exon genes 1395 the ARVD1 critical region. Biochem Biophys Res Commun 278:766–774

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Fedorov A, Gilbert W (2003) Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc Natl Acad Sci U S A 100:7158–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakharkar MK, Kangueane P (2004) Genome SEGE: a database for ‘intronless’ genes in eukaryotic genomes. BMC Bioinformatics 5:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakharkar MK, Kangueane P, Petrov DA et al (2002) SEGE: a database on ‘intron less/single exonic’ genes from eukaryotes. Bioinformatics 18:1266–1267

    Article  CAS  PubMed  Google Scholar 

  • Sakharkar MK, Chow VTK, Chaturvedi I et al (2004a) A report on single exon genes (SEG) in eukaryotes. Front Biosci 9:3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Sakharkar MK, Chow VT, Kangueane P (2004b) Distributions of exons and introns in the human genome. In Silico Biol 4:387–393

    PubMed  CAS  Google Scholar 

  • Sakharkar KR, Chaturvedi I, Chow VTK et al (2005a) u-Genome: A database on genome design in unicellular genomes. In Silico Biol 5:611–615

    PubMed  CAS  Google Scholar 

  • Sakharkar MK, Chow VTK, Ghosh K et al (2005b) Computational prediction of SEG (single exon gene) function in humans. Front Biosci 10:1382–1395

    Article  CAS  PubMed  Google Scholar 

  • Sakharkar MK, Kangueane P, Perumal BS et al (2005c) Human genome—from pieces to patterns. Front Biosci 10:2576–2584

    Article  CAS  PubMed  Google Scholar 

  • Sakharkar MK, Kangueane P, Long M et al (2005d) ExInt—an exon intron database. In: Fuchs J, Podda M (eds) Encyclopedia of medical genomics and proteomics (EMGP). Marcel Dekker, New York

    Google Scholar 

  • Sakharkar MK, Perumal BS, Sakharkar KR et al (2005e) An analysis on gene architecture in human and mouse genomes. In Silico Biol 5:347–365

    PubMed  CAS  Google Scholar 

  • Smith CWJ, Valcarcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25:381–388

    Article  CAS  PubMed  Google Scholar 

  • De Souza SJ (2003) The emergence of a synthetic theory of intron evolution. Genetica 118:117–121

    Article  PubMed  Google Scholar 

  • Sterner DA, Carlo T, Berget SM (1996) Architectural limits on split genes. Proc Natl Acad Sci U S A 93:15081–15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunahara RK, Niznik HB, Weiner DM et al (1990) Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347:80–83

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Tanaka N, Nishida-Kitayama J et al (2002) Alternative splicing regulates the subcellular localization of divalent metal transporter 1 isoforms. Mol Biol Cell 13:4371–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanaraj TA, Stamm S, Clark F et al (2004) ASD: the alternative splicing database. Nucleic Acids Res 32:D64–D69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter CJ, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Wasserman WW, Palumbo M, Thompson W et al (2000) Human-mouse genome comparisons to locate regulatory sites. Nat Genet 26:225–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kangueane, P. (2018). Eukaryotic Genes, Functions, Genomes, Design, and Evolution. In: Bioinformation Discovery. Springer, Cham. https://doi.org/10.1007/978-3-319-95327-4_10

Download citation

Publish with us

Policies and ethics