Skip to main content

Evolving Fuzzy Kalman Filter: A Black-Box Modeling Approach Applied to Rocket Trajectory Forecasting

  • Conference paper
  • First Online:
Book cover Fuzzy Information Processing (NAFIPS 2018)

Abstract

A methodology to system identification based on Evolving Fuzzy Kalman Filter is proposed in this paper. The mathematical formulation using an evolving Takagi-Sugeno (TS) structure is presented: the offline Gustafson Kessel (GK) Algorithm is used to a initial data set; after that, an evolving GK algorithm estimate the antecedent parameters. A fuzzy version OKID (Observer/Kalman Filter Identification) algorithm is formulated to obtain the matrices A, B, C, D, and K (state matrix, input influence matrix, output influence matrix, direct transmission matrix, and Kalman gain matrix, respectively), recursively, composing the consequent parameters. Experimental results from black-box modeling applied to rocket trajectory forecasting show the efficiency and applicability of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME 82, 35–45 (1960)

    Article  Google Scholar 

  2. Smith, G.L., Schmidt, S.F., McGee, L.A.: Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. NASA, Technical report TR R-135 (1962)

    Google Scholar 

  3. Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: A new approach for filtering nonlinear systems. In: Proceedings of the IEEE American Control Conference, pp. 1628–1632 (1995)

    Google Scholar 

  4. Teixeira, B.O.S., Aguirre, L.A., Tôrres, L.A.B.: Filtragem de Kalman com restrições para sistemas não-lineares: revisão e novos resultados. Revista Controle e Automação 21(2), 28–146 (2010)

    Google Scholar 

  5. Guo, J., Huang, W., Williams, B.M.: Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C: Emerg. Technol. 43, 50–64 (2014)

    Article  Google Scholar 

  6. Hajiyev, C., Soken, H.E.: Robust adaptive unscented Kalman filter for attitude estimation of pico satellites. Int. J. Adapt. Signal Process. 107–120 (2014). https://doi.org/10.1002/acs.2393

    Article  MathSciNet  Google Scholar 

  7. Davari, N., Gholami, A.: An asynchronous adaptive direct Kalman filter algorithm to improve underwater navigation system performance. IEEE Sens. J. 17, 1061–1068 (2016). https://doi.org/10.1109/JSEN.2016.2637402

    Article  Google Scholar 

  8. Zadeh, L.A.: Information and control. Fuzzy Sets 8, 338–353 (1965)

    Google Scholar 

  9. Zadeh, L.A.: Fuzzy logic - a personal perspective. Fuzzy Sets Syst. 281, 4–20 (2015). https://doi.org/10.1016/j.fss.2015.05.009

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai, X., Liu, L., Cao, M., Panneerselvam, J., Sun, Q., Wang, H.: Collaborative actuation of wireless sensor and actuator networks for the agriculture industry. IEEE Access 5, 13286–13296 (2017). https://doi.org/10.1109/ACCESS.2017.2725342

    Article  Google Scholar 

  11. Ngatini, Apriliani, E., Nurhadi, H.: Ensemble and fuzzy Kalman filter for position estimation of an autonomous underwater vehicle based on dynamical system of AUV motion. Expert Syst. Appl. 68, 29–35 (2017). https://doi.org/10.1016/j.eswa.2016.10.003

    Article  Google Scholar 

  12. Bouzera, N., Oussalah, M., Mezhoud, N., Khireddine, A.: Fuzzy extended Kalman filter for dynamic mobile localization in urban area using wireless network. Appl. Soft Comput. 57, 452–467 (2017). https://doi.org/10.1016/j.asoc.2017.04.007

    Article  Google Scholar 

  13. Angelov, P., Lughofer, E., Zhou, X.: Evolving fuzzy classifiers using different model architectures. Fuzzy Sets Syst. 159, 3160–3182 (2008). https://doi.org/10.1016/j.fss.2008.06.019

    Article  MathSciNet  MATH  Google Scholar 

  14. Lughofer, E.: FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 16(6), 1393–1410 (2008). https://doi.org/10.1109/TFUZZ.2008.925908

    Article  Google Scholar 

  15. Lughofer, E., Cernuda, C., Kindermann, S., Pratama, M.: Generalized smart evolving fuzzy systems. Evol. Syst. 6(4), 269–292 (2015). https://doi.org/10.1007/s12530-015-9132-6

    Article  Google Scholar 

  16. Alizadeh, S., Kalhor, A., Jamalabadi, H., Araabi, B.N., Ahmadabadi, M.N.: Online local input selection through evolving heterogeneous fuzzy inference system. IEEE Trans. Fuzzy Syst. 24, 1364–1377 (2016). https://doi.org/10.1109/TFUZZ.2016.2516580

    Article  Google Scholar 

  17. Chen, S., Liu, T.: Intelligent tracking control of a PMLSM using self-evolving probabilistic fuzzy neural network. IET Electr. Power Appl. 11, 1043–1054 (2017). https://doi.org/10.1049/iet-epa.2016.0819

    Article  Google Scholar 

  18. Babuska, R.: Fuzzy Modeling Control. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  19. Angelov, P.: An approach for fuzzy rule-base adaptation using on-line clustering. Int. J. Approx. Reason. 35, 275–289 (2004). https://doi.org/10.1016/j.ijar.2003.08.006

    Article  MathSciNet  MATH  Google Scholar 

  20. Juang, J.N.: Applied System Identification. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  21. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)

    Article  Google Scholar 

  22. Chien, T., Chen, Y.: An on-line tracker for a stochastic chaotic system using observer/Kalman filter identification combined with digital redesign method. Algorithms 10, 25 (2017). https://doi.org/10.3390/a10010025

    Article  MathSciNet  Google Scholar 

  23. Wu, C.Y., Tsai, J.S.-H., Guo, S.-M., Shieh, L.-S., Canelon, J.I., Ebrahimzadeh, F., Wang, L.: A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems. J. Frankl. Inst. 352, 1119–1151 (2015). https://doi.org/10.1016/j.jfranklin.2014.12.004

    Article  MathSciNet  MATH  Google Scholar 

  24. Oh, S.-K., Lee, J.M.: Stochastic iterative learning control for discrete linear time-invariant system with batch-varying reference trajectories. J. Process Control 36, 64–78 (2015). https://doi.org/10.1016/j.jprocont.2015.09.008

    Article  Google Scholar 

  25. Cheng, C.W., Huang, J.K., Phan, M., Juang, J.N.: Integrated system identification and modal state estimation for control of large flexible space structures. J. Guidance Control Dyn. 15(1), 88–95 (1992)

    Article  Google Scholar 

  26. Gunter’s Space Page: FTI. http://space.skyrocket.de/doc_lau/fti.htm. Accessed 21 Mar 2018

Download references

Acknowledgment

This work was supported by FAPEMA, IFMA and encouraged by Ph.D. Program in Electrical Engineering of Federal University of Maranhão (PPGEE/UFMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danúbia Soares Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pires, D.S., de Oliveira Serra, G.L. (2018). Evolving Fuzzy Kalman Filter: A Black-Box Modeling Approach Applied to Rocket Trajectory Forecasting. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95312-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95311-3

  • Online ISBN: 978-3-319-95312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics