Skip to main content

Quantitative Super-Resolution Microscopy of Cardiomyocytes

  • Chapter
  • First Online:
Microscopy of the Heart

Abstract

Cardiomyocytes are among the largest of animal cell types. At ~20 μm in typical width and ~100 μm in length, these cells are intrinsically organised to contract rapidly and in synchrony in response to electrical activation. This excitation-contraction coupling (EC coupling) process is achieved through the synchronised opening of the primary calcium (Ca2+) release channels of the sarcoplasmic reticulum (SR)—the ryanodine receptors (RyRs) [1]. A series of tubular membrane invaginations of the surface sarcolemma, known as the t-tubules, are the primary sites of this Ca2+ release deeper within the cell where RyRs are organised into clusters in quasi-crystalline patterns [2, 3]. Flanked between the t-tubule membrane and the SR membrane at the dyadic cleft, the cytoplasmic portions of these giant (29 nm × 29 nm) Ca2+ channel [4] are opened by the Ca2+ that enters the cleft through the voltage-gated L-type Ca2+ channel (LCC). This process, known as Ca2+ induced Ca2+ release (CICR) crucially relies on the restricted diffusion and the consequently elevated concentration of the cleft Ca2+ [5]. Described in the theory of local control of EC coupling, the Ca2+ released via RyRs is likely a steep function of the dimensions of the dyadic cleft and the trigger Ca2+ concentration [6]. The synchronisation of the contraction also relies heavily on the effectiveness of this Ca2+ in reaching and activating the contractile machinery (which forms the myofibrils). Early light and electron micrographs have demonstrated that t-tubules and dyads are, to this end, organised all around the myofibrils to minimise the typical diffusional distance of the released calcium [7–10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    CAS  PubMed  Google Scholar 

  2. Asghari P, Scriven DR, Sanatani S, Gandhi SK, Campbell AI, Moore ED. Nonuniform and variable arrangements of ryanodine receptors within mammalian ventricular couplons. Circ Res. 2014;115(2):252–62.

    CAS  PubMed  Google Scholar 

  3. Franzini-Armstrong C, Protasi F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev. 1997;77(3):699–729.

    CAS  PubMed  Google Scholar 

  4. Yin CC, Lai FA. Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nat Cell Biol. 2000;2(9):669–71.

    CAS  PubMed  Google Scholar 

  5. Soeller C, Cannell MB. Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys J. 1997;73(1):97–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stern MD. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992;63(2):497–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fawcett DW, McNutt NS. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969;42(1):1–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J. 1999;77(3):1528–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Soeller C, Cannell MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res. 1999;84(3):266–75.

    CAS  PubMed  Google Scholar 

  10. Soeller C, Crossman D, Gilbert R, Cannell MB. Analysis of ryanodine receptor clusters in rat and human cardiac myocytes. Proc Natl Acad Sci U S A. 2007;104(38):14958–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hou Y, Jayasinghe I, Crossman DJ, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45–55.

    CAS  PubMed  Google Scholar 

  12. Song LS, Sobie EA, McCulle S, Lederer WJ, Balke CW, Cheng H. Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci U S A. 2006;103(11):4305–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, Weiss RM, Anderson ME, Cheng H, Song LS. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010;107(4):520–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Crossman DJ, Ruygrok PN, Soeller C, Cannell MB. Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS One. 2011;6(3):e17901.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Veratti E. Investigations on the fine structure of striated muscle fiber read before the Reale Istituto Lombardo, 13 March 1902. J Biophys Biochem Cytol. 1961;10(4, Suppl):1–59.

    PubMed  PubMed Central  Google Scholar 

  16. Guo A, Zhang C, Wei S, Chen B, Song LS. Emerging mechanisms of T-tubule remodelling in heart failure. Cardiovasc Res. 2013;98(2):204–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Scriven DR, Dan P, Moore ED. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J. 2000;79(5):2682–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jayasinghe ID, Cannell MB, Soeller C. Organization of ryanodine receptors, transverse tubules, and sodium-calcium exchanger in rat myocytes. Biophys J. 2009;97(10):2664–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Scriven DR, Asghari P, Schulson MN, Moore ED. Analysis of Cav1.2 and ryanodine receptor clusters in rat ventricular myocytes. Biophys J. 2010;99(12):3923–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Soeller C, Jayasinghe ID, Li P, Holden AV, Cannell MB. Three-dimensional high-resolution imaging of cardiac proteins to construct models of intracellular Ca2+ signalling in rat ventricular myocytes. Exp Physiol. 2009;94(5):496–508.

    CAS  PubMed  Google Scholar 

  21. Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat. 1873;9(1):413–8.

    Google Scholar 

  22. Landstrom AP, Kellen CA, Dixit SS, van Oort RJ, Garbino A, Weisleder N, Ma J, Wehrens XH, Ackerman MJ. Junctophilin-2 expression silencing causes cardiocyte hypertrophy and abnormal intracellular calcium-handling. Circ Heart Fail. 2011;4(2):214–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jost A, Heintzmann R. Superresolution multidimensional imaging with structured illumination microscopy. Annu Rev Mat Res. 2013;43(1):261–82.

    CAS  Google Scholar 

  24. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642–5.

    CAS  PubMed  Google Scholar 

  25. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3(10):793–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Betzig E. Single molecules, cells, and super-resolution optics (Nobel Lecture). Angew Chem Int Ed. 2015;54(28):8034–53.

    CAS  Google Scholar 

  27. Klein T, Proppert S, Sauer M. Eight years of single-molecule localization microscopy. Histochem Cell Biol. 2014;141(6):561–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Toomre D, Bewersdorf J. A new wave of cellular imaging. Annu Rev Cell Dev Biol. 2010;26:285–314.

    CAS  PubMed  Google Scholar 

  29. Baddeley D, Jayasinghe ID, Cremer C, Cannell MB, Soeller C. Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys J. 2009a;96(2):L22–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U S A. 2009b;106(52):22275–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wagner E, Lauterbach MA, Kohl T, Westphal V, Williams GS, Steinbrecher JH, Streich JH, Korff B, Tuan HT, Hagen B, Luther S, Hasenfuss G, Parlitz U, Jafri MS, Hell SW, Lederer WJ, Lehnart SE. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res. 2012;111(4):402–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jayasinghe ID, Clowsley AH, Munro M, Hou Y, Crossman DJ, Soeller C. Revealing t-tubules in striated muscle with new optical super-resolution microscopy techniques. Eur J Transl Myol. 2014a;25:4747.

    PubMed  PubMed Central  Google Scholar 

  33. Jayasinghe ID, Munro M, Baddeley D, Launikonis BS, Soeller C. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging. J R Soc Interface. 2014b;11(99)

    PubMed Central  Google Scholar 

  34. Chen-Izu Y, McCulle SL, Ward CW, Soeller C, Allen BM, Rabang C, Cannell MB, Balke CW, Izu LT. Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophys J. 2006;91(1):1–13.

    PubMed  PubMed Central  Google Scholar 

  35. Crossman DJ, Hou Y, Jayasinghe I, Baddeley D, Soeller C. Combining confocal and single molecule localisation microscopy: a correlative approach to multi-scale tissue imaging. Methods. 2015;88:98–108.

    CAS  PubMed  Google Scholar 

  36. Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods. 2008;5(11):943–5.

    PubMed  Google Scholar 

  37. Sobie EA, Guatimosim S, Gomez-Viquez L, Song LS, Hartmann H, Saleet Jafri M, Lederer WJ. The Ca2+ leak paradox and rogue ryanodine receptors: SR Ca2+ efflux theory and practice. Prog Biophys Mol Biol. 2006;90(1-3):172–85.

    CAS  PubMed  Google Scholar 

  38. Hayashi T, Martone ME, Yu Z, Thor A, Doi M, Holst MJ, Ellisman MH, Hoshijima M. Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci. 2009;122(Pt 7):1005–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bers DM, Stiffel VM. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling. Am J Physiol. 1993;264(6 Pt 1):C1587–93.

    CAS  PubMed  Google Scholar 

  40. Baddeley D, Cannell M, Soeller C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res. 2011a;4(6):589–98.

    CAS  Google Scholar 

  41. Baddeley D, Crossman D, Rossberger S, Cheyne JE, Montgomery JM, Jayasinghe ID, Cremer C, Cannell MB, Soeller C. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS One. 2011b;6(5):e20645.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Murphy RM, Dutka TL, Horvath D, Bell JR, Delbridge LM, Lamb GD. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J Physiol. 2013;591(Pt 3):719–29.

    CAS  PubMed  Google Scholar 

  43. Wang W, Landstrom AP, Wang Q, Munro ML, Beavers D, Ackerman MJ, Soeller C, Wehrens XH. Reduced junctional Na+/Ca2+-exchanger activity contributes to sarcoplasmic reticulum Ca2+ leak in junctophilin-2-deficient mice. Am J Physiol Heart Circ Physiol. 2014;307(9):H1317–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo A, Zhang X, Iyer VR, Chen B, Zhang C, Kutschke WJ, Weiss RM, Franzini-Armstrong C, Song L-S. Overexpression of junctophilin-2 does not enhance baseline function but attenuates heart failure development after cardiac stress. Proc Natl Acad Sci. 2014;111(33):12240–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Franzini-Armstrong C, Peachey LD. A modified Golgi black reaction method for light and electron microscopy. J Histochem Cytochem. 1982;30(2):99–105.

    CAS  PubMed  Google Scholar 

  46. Cannell MB, Crossman DJ, Soeller C. Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure. J Muscle Res Cell Motil. 2006;27(5-7):297–306.

    CAS  PubMed  Google Scholar 

  47. Sachse FB, Torres NS, Savio-Galimberti E, Aiba T, Kass DA, Tomaselli GF, Bridge JH. Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circ Res. 2012;110(4):588–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shang W, Lu F, Sun T, Xu J, Li LL, Wang Y, Wang G, Chen L, Wang X, Cannell MB, Wang SQ, Cheng H. Imaging Ca2+ nanosparks in heart with a new targeted biosensor. Circ Res. 2014;114(3):412–20.

    CAS  PubMed  Google Scholar 

  49. Guo A, Song LS. AutoTT: automated detection and analysis of T-tubule architecture in cardiomyocytes. Biophys J. 2014;106(12):2729–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jayasinghe I, Crossman D, Soeller C, Cannell M. Comparison of the organization of T-tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium. Clin Exp Pharmacol Physiol. 2012a;39(5):469–76.

    CAS  PubMed  Google Scholar 

  51. Jayasinghe ID, Baddeley D, Kong CH, Wehrens XH, Cannell MB, Soeller C. Nanoscale organization of junctophilin-2 and ryanodine receptors within peripheral couplings of rat ventricular cardiomyocytes. Biophys J. 2012b;102(5):L19–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wong J, Baddeley D, Bushong EA, Yu Z, Ellisman MH, Hoshijima M, Soeller C. Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of t-tubules near junctions. Biophys J. 2013;104(11):L22–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pinali C, Kitmitto A. Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. J Mol Cell Cardiol. 2014;76C:1–11.

    Google Scholar 

  54. Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91(11):4258–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed. 2008;47(33):6172–6.

    CAS  Google Scholar 

  56. van de Linde S, Sauer M. How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem Soc Rev. 2014;43(4):1076–87.

    PubMed  Google Scholar 

  57. Vaughan JC, Dempsey GT, Sun E, Zhuang X. Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy. J Am Chem Soc. 2013;135(4):1197–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods. 2011;8(12):1027–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tokunaga M, Imamoto N, Sakata-Sogawa K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods. 2008;5(2):159–61.

    CAS  PubMed  Google Scholar 

  60. Huang F, Hartwich TMP, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, Uchil PD, Myers JR, Baird MA, Mothes W, Davidson MW, Toomre D, Bewersdorf J. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods. 2013;10(7):653–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin R, Clowsley AH, Jayasinghe I, Soeller C. Single-molecule localization microscopy with sCMOS cameras. Biophotonics. 2016;110:161a.

    Google Scholar 

  62. McGorty R, Kamiyama D, Huang B. Active microscope stabilization in three dimensions using image correlation. Optic Nanosc. 2013;2(1):3. https://doi.org/10.1186/2192-2853-1182-1183.

    Article  Google Scholar 

  63. Cella Zanacchi F, Lavagnino Z, Faretta M, Furia L, Diaspro A. Light-sheet confined super-resolution using two-photon photoactivation. PLoS One. 2013;8(7):e67667.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang B, Jones SA, Brandenburg B, Zhuang X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods. 2008;5(12):1047–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Baddeley D. Efficient ROI selection for multi-emitter fitting approaches in single-molecule super-resolution microscopy. Biophys J. 2014;106(2):605a.

    Google Scholar 

  66. Mlodzianoski MJ, Schreiner JM, Callahan SP, Smolkova K, Dlaskova A, Santorova J, Jezek P, Bewersdorf J. Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt Express. 2011;19(16):15009–19.

    PubMed  Google Scholar 

  67. Baddeley D, Cannell MB, Soeller C. Visualization of localization microscopy data. Microsc Microanal. 2010;16(1):64–72.

    CAS  PubMed  Google Scholar 

  68. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods. 2010;7(5):377–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biophys J. 2002;82(5):2775–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jayasinghe ID, Launikonis BS. Three-dimensional reconstruction and analysis of the tubular system of vertebrate skeletal muscle. J Cell Sci. 2013;126:4048.

    CAS  PubMed  Google Scholar 

  71. Hou Y, Crossman DJ, Rajagopal V, Baddeley D, Jayasinghe I, Soeller C. Super-resolution fluorescence imaging to study cardiac biophysics: alpha-actinin distribution and Z-disk topologies in optically thick cardiac tissue slices. Prog Biophys Mol Biol. 2014;115:328.

    CAS  PubMed  Google Scholar 

  72. Shim S-H, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, Wang X, Xu C, Bi G-Q, Zhuang X. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci. 2012;109(35):13978–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Banterle N, Bui KH, Lemke EA, Beck M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol. 2013;183(3):363–7.

    CAS  PubMed  Google Scholar 

  74. Levet F, Hosy E, Kechkar A, Butler C, Beghin A, Choquet D, Sibarita JB. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods. 2015;12:1065.

    CAS  PubMed  Google Scholar 

  75. Rossy J, Cohen E, Gaus K, Owen DM. Method for co-cluster analysis in multichannel single-molecule localisation data. Histochem Cell Biol. 2014;141(6):605–12.

    CAS  PubMed  Google Scholar 

  76. Shivanandan A, Deschout H, Scarselli M, Radenovic A. Challenges in quantitative single molecule localization microscopy. FEBS Lett. 2014;588(19):3595–602.

    CAS  PubMed  Google Scholar 

  77. Ulbrich MH, Isacoff EY. Subunit counting in membrane-bound proteins. Nat Methods. 2007;4(4):319–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jungmann R, Avendano MS, Woehrstein JB, Dai M, Shih WM, Yin P. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods. 2014;11(3):313–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jungmann R, Avendano MS, Dai M, Woehrstein JB, Agasti SS, Feiger Z, Rodal A, Yin P. Quantitative super-resolution imaging with qPAINT. Nat Methods. 2016;13(5):439–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Loschberger A, van de Linde S, Dabauvalle MC, Rieger B, Heilemann M, Krohne G, Sauer M. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci. 2012;125(Pt 3):570–5.

    PubMed  Google Scholar 

  81. Müller CB, Enderlein J. Image scanning microscopy. Phys Rev Lett. 2010;104(19):198101.

    PubMed  Google Scholar 

  82. Huff J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat Methods. 2015;12:1205.

    Google Scholar 

  83. Sengupta P, van Engelenburg SB, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy. Chem Rev. 2014;114(6):3189–202.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Soeller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soeller, C., Jayasinghe, I.D. (2018). Quantitative Super-Resolution Microscopy of Cardiomyocytes. In: Kaestner, L., Lipp, P. (eds) Microscopy of the Heart. Springer, Cham. https://doi.org/10.1007/978-3-319-95304-5_3

Download citation

Publish with us

Policies and ethics