Skip to main content

Mechanics of the Cell Nucleus

  • Chapter
  • First Online:
Biomechanics in Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1092))

Abstract

Nucleus is a specialized organelle that serves as a control tower of all the cell behavior. While traditional biochemical features of nuclear signaling have been unveiled, many of the physical aspects of nuclear system are still under question. Innovative biophysical studies have recently identified mechano-regulation pathways that turn out to be critical in cell migration, particularly in cancer invasion and metastasis. Moreover, to take a deeper look onto the oncologic relevance of the nucleus, there has been a shift in cell systems. That is, our understanding of nucleus does not stand alone but it is understood by the relationship between cell and its microenvironment in the in vivo-relevant 3D space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schirmer EC, Foisner R (2007) Proteins that associate with lamins: many faces, many functions. Exp Cell Res 313:2167–2179. https://doi.org/10.1016/j.yexcr.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  2. Denais C, Lammerding J (2014) In: Schirmer EC, de las Heras JI (eds) Cancer biology and the nuclear envelope: recent advances may elucidate past paradoxes. Springer, New York, pp 435–470

    Chapter  Google Scholar 

  3. Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13:622–628. https://doi.org/10.1016/j.tcb.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  4. Mackay DR, Makise M, Ullman KS (2010) Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J Cell Biol 191:923–931. https://doi.org/10.1083/jcb.201007124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smythe C, Jenkins HE, Hutchison CJ (2000) Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J 19:3918–3931. https://doi.org/10.1093/emboj/19.15.3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou L, Pante N (2010) The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Lett 584:3013–3020. https://doi.org/10.1016/j.febslet.2010.05.038

    Article  CAS  PubMed  Google Scholar 

  7. Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279. https://doi.org/10.1016/0092-8674(93)90355-T

    Article  CAS  PubMed  Google Scholar 

  8. Zwerger M, Ho CY, Lammerding J (2011) Nuclear mechanics in disease. Annu Rev Biomed Eng 13:397–428. https://doi.org/10.1146/annurev-bioeng-071910-124736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122: 1477–1486. https://doi.org/10.1242/jcs.037333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaines P et al (2008) Mouse neutrophils lacking lamin B-receptor expression exhibit aberrant development and lack critical functional responses. Exp Hematol 36:965–976. https://doi.org/10.1016/j.exphem.2008.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brandt A et al (2006) Developmental control of nuclear size and shape by Kugelkern and Kurzkern. Curr Biol 16:543–552. https://doi.org/10.1016/j.cub.2006.01.051

    Article  CAS  PubMed  Google Scholar 

  12. Pilot F, Philippe J-M, Lemmers C, Chauvin J-P, Lecuit T (2006) Developmental control of nuclear morphogenesis and anchoring by Charleston, identified in a functional genomic screen of Drosophila cellularisation. Development 133: 711–723. https://doi.org/10.1242/dev.02251

    Article  CAS  PubMed  Google Scholar 

  13. Yen A, Pardee A (1979) Role of nuclear size in cell growth initiation. Science 204:1315–1317. https://doi.org/10.1126/science.451539

    Article  CAS  PubMed  Google Scholar 

  14. Finan JD, Chalut KJ, Wax A, Guilak F (2009) Nonlinear osmotic properties of the cell nucleus. Ann Biomed Eng 37:477–491. https://doi.org/10.1007/s10439-008-9618-5

    Article  PubMed  Google Scholar 

  15. Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323:560–564. https://doi.org/10.1038/323560a0

    Article  CAS  PubMed  Google Scholar 

  16. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749–789. https://doi.org/10.1146/annurev.biochem.73.011303.073823

    Article  CAS  PubMed  Google Scholar 

  17. Gruenbaum Y et al (2003) The nuclear lamina and its functions in the nucleus. Int Rev Cytol 226:1–62

    Article  CAS  PubMed  Google Scholar 

  18. Stuurman N, Heins S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122:42–66. https://doi.org/10.1006/jsbi.1998.3987

    Article  CAS  PubMed  Google Scholar 

  19. Ellenberg J, Lippincott-Schwartz J (1999) Dynamics and mobility of nuclear envelope proteins in interphase and mitotic cells revealed by green fluorescent protein chimeras. Methods 19:362–372. https://doi.org/10.1006/meth.1999.0872

    Article  CAS  PubMed  Google Scholar 

  20. Dahl KN, Engler AJ, Pajerowski JD, Discher DE (2005) Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys J 89:2855–2864. https://doi.org/10.1529/biophysj.105.062554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dahl KN, Kahn SM, Wilson KL, Discher DE (2004) The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell Sci 117: 4779–4786

    Article  CAS  PubMed  Google Scholar 

  22. Newport JW, Wilson KL, Dunphy WG (1990) A lamin-independent pathway for nuclear envelope assembly. J Cell Biol 111:2247–2259. https://doi.org/10.1083/jcb.111.6.2247

    Article  CAS  PubMed  Google Scholar 

  23. Lammerding J et al (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lammerding J et al (2006) Lamins A and C but not lamin B1 regulate nuclear mechanics. J Biol Chem 281:25768–25780. https://doi.org/10.1074/jbc.M513511200

    Article  CAS  PubMed  Google Scholar 

  25. Kim DH et al (2012) Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci Rep 2:555. https://doi.org/10.1038/srep00555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  27. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  28. Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318. https://doi.org/10.1161/circresaha.108.173989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schreiner SM, Koo PK, Zhao Y, Mochrie SGJ, King MC (2015) The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat Commun 6:7159. https://doi.org/10.1038/ncomms8159. https://www.nature.com/articles/ncomms8159#supplementary-information

    Article  PubMed  Google Scholar 

  30. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A 104:15619–15624. https://doi.org/10.1073/pnas.0702576104

    Article  PubMed  PubMed Central  Google Scholar 

  31. Melling M et al (2001) Atomic force microscopy imaging of the human trigeminal ganglion. NeuroImage 14:1348–1352

    Article  CAS  PubMed  Google Scholar 

  32. Raška I, Shaw PJ, Cmarko D (2006) Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 18:325–334

    Article  PubMed  Google Scholar 

  33. Andrade L, Tan EM, Chan E (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci 90:1947–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sahin U et al (2014) Oxidative stress–induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol 204:931–945. https://doi.org/10.1083/jcb.201305148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jockusch BM, Schoenenberger C-A, Stetefeld J, Aebi U (2006) Tracking down the different forms of nuclear actin. Trends Cell Biol 16: 391–396

    Article  CAS  PubMed  Google Scholar 

  36. Visa N, Percipalle P (2010) Nuclear functions of actin. Cold Spring Harb Perspect Biol 2:a000620

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hofmann WA, Johnson T, Klapczynski M, Fan J-L, De Lanerolle P (2006) From transcription to transport: emerging roles for nuclear myosin I this paper is one of a selection of papers published in this special issue, entitled 27th international west coast chromatin and chromosome conference, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 84:418–426

    Article  CAS  PubMed  Google Scholar 

  38. Young KG, Kothary R (2005) Spectrin repeat proteins in the nucleus. BioEssays 27:144–152

    Article  CAS  PubMed  Google Scholar 

  39. Swift J et al (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104. https://doi.org/10.1126/science.1240104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Panorchan P, Schafer BW, Wirtz D, Tseng Y (2004) Nuclear envelope breakdown requires overcoming the mechanical integrity of the nuclear lamina. J Biol Chem 279:43462–43467

    Article  CAS  PubMed  Google Scholar 

  41. Shin JW et al (2013) Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc Natl Acad Sci U S A 110:18892–18897. https://doi.org/10.1073/pnas.1304996110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lammerding J, Dahl KN, Discher DE, Kamm RD (2007) Nuclear mechanics and methods. Methods Cell Biol 83:269–294. https://doi.org/10.1016/s0091-679x(07)83011-1

    Article  CAS  PubMed  Google Scholar 

  43. Lammerding J (2011) Mechanics of the nucleus. Compr Physiol 1:783–807. https://doi.org/10.1002/cphy.c100038

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94:849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crisp M et al (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53. https://doi.org/10.1083/jcb.200509124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luke Y et al (2008) Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci 121:1887–1898. https://doi.org/10.1242/jcs.019075

    Article  CAS  PubMed  Google Scholar 

  47. Wilhelmsen K et al (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 171:799–810. https://doi.org/10.1083/jcb.200506083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Belaadi N, Aureille J, Guilluy C (2016) Under pressure: mechanical stress management in the nucleus. Cells 5. doi:https://doi.org/10.3390/cells5020027

    Article  PubMed Central  Google Scholar 

  49. Razafsky D, Wirtz D, Hodzic D (2014) Nuclear envelope in nuclear positioning and cell migration. Adv Exp Med Biol 773:471–490. https://doi.org/10.1007/978-1-4899-8032-8_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ (2007) A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J Cell Biol 178:897–904. https://doi.org/10.1083/jcb.200702026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaminski A, Fedorchak GR, Lammerding J (2014) The cellular mastermind(?)-mechanotransduction and the nucleus. Prog Mol Biol Transl Sci 126:157–203. https://doi.org/10.1016/b978-0-12-394624-9.00007-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  53. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152. https://doi.org/10.1016/s0006-3495(00)76279-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18:347–352. https://doi.org/10.1016/j.tcb.2008.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deguchi S, Maeda K, Ohashi T, Sato M (2005) Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. J Biomech 38:1751–1759. https://doi.org/10.1016/j.jbiomech.2005.06.003

    Article  PubMed  Google Scholar 

  56. Guilak F (1995) Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech 28:1529–1541

    Article  CAS  PubMed  Google Scholar 

  57. Broers JL et al (2004) Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13:2567–2580

    Article  CAS  PubMed  Google Scholar 

  58. Lovett DB, Shekhar N, Nickerson JA, Roux KJ, Lele TP (2013) Modulation of nuclear shape by substrate rigidity. Cell Mol Bioeng 6:230–238. https://doi.org/10.1007/s12195-013-0270-2

    Article  CAS  PubMed  Google Scholar 

  59. Thery M et al (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci U S A 103:19771–19776. https://doi.org/10.1073/pnas.0609267103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Emerson LJ et al (2009) Defects in cell spreading and ERK1/2 activation in fibroblasts with lamin A/C mutations. Biochim Biophys Acta 1792:810–821. https://doi.org/10.1016/j.bbadis.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  61. Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600. https://doi.org/10.1038/nrm3416

    Article  CAS  PubMed  Google Scholar 

  62. Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497:507–511. https://doi.org/10.1038/nature12105. http://www.nature.com/nature/journal/v497/n7450/abs/nature12105.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Robinson JA et al (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728. https://doi.org/10.1074/jbc.M602308200

    Article  CAS  PubMed  Google Scholar 

  64. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Leung FC (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20:1170–1177

    Article  CAS  PubMed  Google Scholar 

  66. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  67. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  68. Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2: 1136–1143

    Article  CAS  PubMed  Google Scholar 

  69. Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21: 4183–4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liang G et al (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101:7357–7362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shi Y (2007) Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 8:829–833

    Article  CAS  PubMed  Google Scholar 

  74. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  75. Nan X et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  CAS  PubMed  Google Scholar 

  76. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25:244–248. https://doi.org/10.1038/nbt1279

    Article  CAS  PubMed  Google Scholar 

  78. Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3. 3 and H2A. Z. Genes Dev 21:1519–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zlatanova J, Thakar A (2008) H2A. Z: view from the top. Structure 16:166–179

    Article  CAS  PubMed  Google Scholar 

  80. Svotelis A, Gevry N, Gaudreau L (2009) Regulation of gene expression and cellular proliferation by histone H2A. Z this paper is one of a selection of papers published in this special issue, entitled CSBMCB’s 51st annual meeting–epigenetics and chromatin dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 87:179–188

    Article  CAS  PubMed  Google Scholar 

  81. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  82. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  83. Zhang B, Pan X, Cobb GP, Anderson T (2007) A. microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12. https://doi.org/10.1016/j.ydbio.2006.08.028

    Article  CAS  PubMed  Google Scholar 

  84. Friedman JM et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69:2623–2629. https://doi.org/10.1158/0008-5472.can-08-3114

    Article  CAS  PubMed  Google Scholar 

  85. Fabbri M et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci 104:15805–15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gundersen GG, Worman HJ (2013) Nuclear positioning. Cell 152:1376–1389. https://doi.org/10.1016/j.cell.2013.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Doyle AD, Wang FW, Matsumoto K, Yamada KM (2009) One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol 184:481–490. https://doi.org/10.1083/jcb.200810041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Palazzo AF et al (2001) Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11:1536–1541

    Article  CAS  PubMed  Google Scholar 

  89. Kutscheidt S et al (2014) FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nat Cell Biol 16:708–715. https://doi.org/10.1038/ncb2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim D-H, Cho S, Wirtz D (2014) Tight coupling between nucleus and cell migration through the perinuclear actin cap. J Cell Sci 127:2528–2541. https://doi.org/10.1242/jcs.144345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chancellor TJ, Lee J, Thodeti CK, Lele T (2010) Actomyosin tension exerted on the nucleus through Nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys J 99:115–123. https://doi.org/10.1016/j.bpj.2010.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zink D, H Fischer A, Nickerson J (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  CAS  PubMed  Google Scholar 

  93. Wolf K et al (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201:1069–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vargas JD, Hatch EM, Anderson DJ, Hetzer MW (2012) Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3:88–100

    Article  PubMed  PubMed Central  Google Scholar 

  95. Leman ES, Getzenberg RH (2002) Nuclear matrix proteins as biomarkers in prostate cancer. J Cell Biochem 86:213–223

    Article  CAS  PubMed  Google Scholar 

  96. Lever E, Sheer D (2010) The role of nuclear organization in cancer. J Pathol 220:114–125

    CAS  PubMed  Google Scholar 

  97. Coradeghini R et al (2006) Differential expression of nuclear lamins in normal and cancerous prostate tissues. Oncol Rep 15:609–614

    CAS  PubMed  Google Scholar 

  98. Shen F et al (2011) Nuclear protein isoforms: implications for cancer diagnosis and therapy. J Cell Biochem 112:756–760. https://doi.org/10.1002/jcb.23002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Willis ND et al (2008) Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3:e2988

    Article  PubMed  PubMed Central  Google Scholar 

  100. Helfand BT et al (2012) Chromosomal regions associated with prostate cancer risk localize to lamin B-deficient microdomains and exhibit reduced gene transcription. J Pathol 226:735–745. https://doi.org/10.1002/path.3033

    Article  CAS  PubMed  Google Scholar 

  101. Capo-chichi CD, Cai KQ, Testa JR, Godwin AK, Xu XX (2009) Loss of GATA6 leads to nuclear deformation and aneuploidy in ovarian cancer. Mol Cell Biol 29:4766–4777. https://doi.org/10.1128/mcb.00087-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Somech R et al (2007) Enhanced expression of the nuclear envelope LAP2 transcriptional repressors in normal and malignant activated lymphocytes. Ann Hematol 86:393–401. https://doi.org/10.1007/s00277-007-0275-9

    Article  CAS  PubMed  Google Scholar 

  103. Sjöblom T et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274. https://doi.org/10.1126/science.1133427

    Article  CAS  PubMed  Google Scholar 

  104. Takahashi N et al (2008) Tumor marker nucleoporin 88 kDa regulates nucleocytoplasmic transport of NF-κB. Biochem Biophys Res Commun 374:424–430. https://doi.org/10.1016/j.bbrc.2008.06.128

    Article  CAS  PubMed  Google Scholar 

  105. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36. https://doi.org/10.1093/carcin/bgp220

    Article  CAS  PubMed  Google Scholar 

  106. Rodriguez J et al (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66:8462–9468

    Article  CAS  PubMed  Google Scholar 

  107. Lee TS et al (2006) DNA hypomethylation of CAGE promotors in squamous cell carcinoma of uterine cervix. Ann N Y Acad Sci 1091:218–224. https://doi.org/10.1196/annals.1378.068

    Article  CAS  PubMed  Google Scholar 

  108. Takano Y, Kato Y, Masuda M, Ohshima Y, Okayasu I (1999) Cyclin D2, but not cyclin D1, overexpression closely correlates with gastric cancer progression and prognosis. J Pathol 189:194–200. https://doi.org/10.1002/(sici)1096-9896(199910)189:2<194::aid-path426>3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  109. Neupane D, Korc M (2008) 14-3-3sigma modulates pancreatic cancer cell survival and invasiveness. Clin Cancer Res 14:7614–7623. https://doi.org/10.1158/1078-0432.ccr-08-1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hedenfalk I et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548. https://doi.org/10.1056/nejm200102223440801

    Article  CAS  PubMed  Google Scholar 

  111. Halkidou K et al (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    Article  CAS  PubMed  Google Scholar 

  112. Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400

    Article  CAS  PubMed  Google Scholar 

  113. Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32: 959–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nguyen CT et al (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62:6456–6461

    CAS  PubMed  Google Scholar 

  115. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer: the polycomb connection. Cell 118:409–418

    Article  CAS  PubMed  Google Scholar 

  116. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692. https://doi.org/10.1016/j.cell.2007.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morey L et al (2008) MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol 28:5912–5923. https://doi.org/10.1128/mcb.00467-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Svotelis A, Gevry N, Gaudreau L (2009) Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol 87:179–188. https://doi.org/10.1139/o08-138

    Article  CAS  PubMed  Google Scholar 

  119. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516. https://doi.org/10.1016/j.tcb.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  120. Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. https://doi.org/10.1158/0008-5472.can-05-1783

    Article  CAS  PubMed  Google Scholar 

  121. Takamizawa J et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756. https://doi.org/10.1158/0008-5472.can-04-0637

    Article  CAS  PubMed  Google Scholar 

  122. Hayashita Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632. https://doi.org/10.1158/0008-5472.can-05-2352

    Article  CAS  PubMed  Google Scholar 

  123. Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    CAS  PubMed  Google Scholar 

  124. Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463. https://doi.org/10.1016/j.cell.2005.02.022

    Article  CAS  PubMed  Google Scholar 

  125. Hawkins RJ et al (2009) Pushing off the walls: a mechanism of cell motility in confinement. Phys Rev Lett 102:058103. https://doi.org/10.1103/PhysRevLett.102.058103

    Article  CAS  PubMed  Google Scholar 

  126. Harada T et al (2014) Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Biol 204:669–682. https://doi.org/10.1083/jcb.201308029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Beadle C et al (2008) The role of myosin II in glioma invasion of the brain. Mol Biol Cell 19:3357–3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Osorio DS, Gomes ER (2014) In: Schirmer EC, de las Heras JI (eds) Cancer biology and the nuclear envelope: recent advances may elucidate past paradoxes. Springer, New York, pp 505–520

    Chapter  Google Scholar 

  129. Friedl P, Wolf K, Lammerding J (2011) Nuclear mechanics during cell migration. Curr Opin Cell Biol 23:55–64

    Article  CAS  PubMed  Google Scholar 

  130. Razafsky D, Wirtz D, Hodzic D (2014) Cancer biology and the nuclear envelope. Springer, New York, pp 471–490

    Book  Google Scholar 

Download references

Acknowledgments

Authors are indebted to many colleagues and students for their input and perspectives of nuclear mechanics. Special thanks to Dr. Denis Wirtz at the Johns Hopkins University, who provided overall guidance of this chapter. We appreciated Geonhui Lee, Seong-Beom Han, Jung-Won Park, and Jeong-Ki Kim in the Applied Mechanobiology Group (AMG) at Korea University for in-depth discussion of cellular and nuclear mechanobiology. This work was supported by the KU-KIST Graduate School of Converging Science and Technology Program, the National Research Foundation of Korea (NRF-2016R1C1B2015018 and NRF-2017K2A9A1A01092963), and Korea University Future Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hwee Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, DH., Hah, J., Wirtz, D. (2018). Mechanics of the Cell Nucleus. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_3

Download citation

Publish with us

Policies and ethics