Skip to main content

Engineered Models of Metastasis with Application to Study Cancer Biomechanics

  • Chapter
  • First Online:
Biomechanics in Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1092))

Abstract

Three-dimensional complex biomechanical interactions occur from the initial steps of tumor formation to the later phases of cancer metastasis. Conventional monolayer cultures cannot recapitulate the complex microenvironment and chemical and mechanical cues that tumor cells experience during their metastatic journey, nor the complexity of their interactions with other, noncancerous cells. As alternative approaches, various engineered models have been developed to recapitulate specific features of each step of metastasis with tunable microenvironments to test a variety of mechanistic hypotheses. Here the main recent advances in the technologies that provide deeper insight into the process of cancer dissemination are discussed, with an emphasis on three-dimensional and mechanical factors as well as interactions between multiple cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spill F, Reynolds DS, Kamm RD, Zaman MH (2016) Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40:41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carey SP, D’Alfonso TM, Shin SJ, Reinhart-King CA (2012) Mechanobiology of tumor invasion: engineering meets oncology. Crit Rev Oncol Hematol 83(2):170–183

    Article  PubMed  Google Scholar 

  3. Shieh AC (2011) Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 39(5):1379–1389

    Article  PubMed  Google Scholar 

  4. Malandrino A, Kamm RD, Moeendarbary E (2017) In vitro modeling of mechanics in cancer metastasis. ACS Biomater Sci Eng 4(2):294–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Moeendarbary E, Harris AR (2014) Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med 6(5):371–388

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zaman MH (2013) The role of engineering approaches in analysing cancer invasion and metastasis. Nat Rev Cancer 13(8):596–603

    Article  CAS  PubMed  Google Scholar 

  7. Xu X, Farach-Carson MC, Jia X (2014) Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 32(7):1256–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    Article  CAS  PubMed  Google Scholar 

  9. Bin KJ (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377

    Article  Google Scholar 

  10. Eglen RM, Randle DH (2015) Drug discovery goes three-dimensional: goodbye to flat high-throughput screening? Assay Drug Dev Technol 13(5):262–265

    Article  CAS  PubMed  Google Scholar 

  11. Laschke MW, Menger MD (2017) Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol 35(2):133–144

    Article  CAS  PubMed  Google Scholar 

  12. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC (2016) In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tabassum DP, Polyak K (2015) Tumorigenesis: it takes a village. Nat Rev Cancer 15(8):473–483

    Article  CAS  PubMed  Google Scholar 

  14. Wei SC, Yang J (2016) Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol 26(2):111–120

    Article  CAS  PubMed  Google Scholar 

  15. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weis S, Cheresh D (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370 https://www.nature.com/articles/nm.2537. Accessed 14 July 14 2017

    Article  CAS  PubMed  Google Scholar 

  17. Santini MT, Rainaldi G (1999) Three-dimensional spheroid model in tumor biology. Pathobiology 67(3):148–157

    Article  CAS  PubMed  Google Scholar 

  18. Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 79(1):1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weiswald L-B, Bellet D, Dangles-Marie V (2015) Spherical cancer models in tumor biology. Neoplasia 17(1):1–15

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nyga A, Cheema U, Loizidou M (2011) 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 5(3):239–248

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burdett E, Kasper FK, Mikos AG, Ludwig JA (2010) Engineering tumors: a tissue engineering perspective in cancer biology. Tissue Eng Part B Rev 16(3):351–359

    Article  PubMed  Google Scholar 

  22. Lin R-Z, Chang H-Y, Chang H-Y (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3(9–10):1172–1184

    Article  CAS  PubMed  Google Scholar 

  23. Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W (2014) 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 69–70:29–41

    Article  PubMed  CAS  Google Scholar 

  24. LaBarbera DV, Reid BG, Yoo BH (2012) The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opin Drug Discovery 7(9):819–830

    Article  CAS  Google Scholar 

  25. Achilli T-M, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12(10):1347–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bin KJ, Stein R, O’Hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer — a review. Breast Cancer Res Treat 85(3):281–291

    Article  Google Scholar 

  27. Friedrich J, Ebner R, Kunz-Schughart LA (2007) Experimental anti-tumor therapy in 3-D: spheroids – old hat or new challenge? Int J Radiat Biol 83(11–12):849–871

    Article  CAS  PubMed  Google Scholar 

  28. Brú A, Albertos S, Subiza JL, Ló Pez García-Asenjo J, Brú I (2003) The universal dynamics of tumor growth. Biophys J 85:2948–2961

    Article  PubMed  PubMed Central  Google Scholar 

  29. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592

    Article  CAS  PubMed  Google Scholar 

  30. Vadivelu R, Kamble H, Shiddiky M, Nguyen N-T (2017) Microfluidic technology for the generation of cell spheroids and their applications. Micromachines 8(4):94

    Article  PubMed Central  Google Scholar 

  31. Hirschhaeuser F et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15

    Article  CAS  PubMed  Google Scholar 

  32. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD (2010) Microfluidic platforms for studies of angiogenesis, cell migration, and cell–cell interactions. Ann Biomed Eng 38(3): 1164–1177

    Article  PubMed  Google Scholar 

  33. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S (2015) Bioprinting for cancer research. Trends Biotechnol 33(9):504–513

    Article  CAS  PubMed  Google Scholar 

  34. Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16(1):321–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tse JM et al (2012) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A 109(3):911–916

    Article  CAS  PubMed  Google Scholar 

  36. Nia HT et al (2016) Solid stress and elastic energy as measures of tumour mechanopathology. Nat Publ Group 1(November):1–11

    Google Scholar 

  37. Fischbach C et al (2007) Engineering tumors with 3D scaffolds. Nat Methods 4(10):855–860

    Article  CAS  PubMed  Google Scholar 

  38. Song H-HG, Park KM, Gerecht S (2014) Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 79–80:19–29

    Article  PubMed  CAS  Google Scholar 

  39. Ramanujan S et al (2002) Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J 83(3):1650–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsai H-F, Trubelja A, Shen AQ, Bao G (2017) Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 14(131).

    Article  PubMed Central  Google Scholar 

  41. Calvo F et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646

    Article  CAS  PubMed  Google Scholar 

  42. Labernadie A et al (2017) A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19(3):224–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jeong S-Y, Lee J-H, Shin Y, Chung S, Kuh H-J (2016) Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One 11(7):e0159013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. DelNero P et al (2015) 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 55:110–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Funamoto K et al (2012) A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab Chip 12(22):4855–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Madsen CD et al (2015) Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep 16(10):1394–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koumoutsakos P, Pivkin I, Milde F (2013) The fluid mechanics of cancer and its therapy. Annu Rev Fluid Mech 45(1):325–355

    Article  Google Scholar 

  48. Rieger H, Welter M (2015) Integrative models of vascular remodeling during tumor growth. Wiley Interdiscip Rev Syst Biol Med 7(3):113–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen D-HT et al (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 110(17):6712–6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galie PA et al (2014) Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci U S A 111(22):7968–7973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boldock L, Wittkowske C, Perrault CM (2017) Microfluidic traction force microscopy to study mechanotransduction in angiogenesis. Microcirculation 24(5):e12361

    Article  Google Scholar 

  52. Bray LJ, Werner C (2017) Evaluation of three-dimensional in vitro models to study tumor angiogenesis. ACS Biomater Sci Eng 4(2):337–346

    Article  CAS  PubMed  Google Scholar 

  53. Song JW, Bazou D, Munn LL (2012) Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr Biol 4(8):857–862

    Article  CAS  Google Scholar 

  54. Amann A, Zwierzina M, Koeck S, Gamerith G, Pechriggl E, Huber JM, Lorenz E, Kelm JM, Hilbe W, Zwierzina H, Kern J (2017) Development of a 3D angiogenesis model to study tumour–endothelial cell interactions and the effects of anti-angiogenic drugs. Sci Rep 7(1):2963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Correa de Sampaio P et al (2012) A heterogeneous in vitro three dimensional model of tumour-stroma interactions regulating sprouting angiogenesis. PLoS One 7(2):e30753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Upreti M et al (2011) Tumor-endothelial cell three-dimensional spheroids: new aspects to enhance radiation and drug therapeutics. Transl Oncol 4(6):365–IN3

    Article  PubMed  PubMed Central  Google Scholar 

  57. Seano G et al (2013) Modeling human tumor angiogenesis in a three-dimensional culture system. Blood 121(21):e129–e137

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen DT, Fan Y, Akay YM, Akay M (2016) Investigating glioblastoma angiogenesis using a 3D in vitro GelMA microwell platform. IEEE Trans Nanobioscience 15(3):289–293

    Article  PubMed  Google Scholar 

  59. Taubenberger AV et al (2016) 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater 36:73–85

    Article  CAS  PubMed  Google Scholar 

  60. Bray LJ et al (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620

    Article  CAS  PubMed  Google Scholar 

  61. Stroka KM, Konstantopoulos K (2014) Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am J Physiol Cell Physiol 306(2):C98–C109

    Article  CAS  PubMed  Google Scholar 

  62. Polacheck WJ, Li R, Uzel SGM, Kamm RD (2013) Microfluidic platforms for mechanobiology. Lab Chip 13(12):2252–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kramer N et al (2013) In vitro cell migration and invasion assays. Mutat Res 752(1):10–24

    Article  CAS  PubMed  Google Scholar 

  64. Balzer EM et al (2012) Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J 26(10):4045–4056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tong Z et al (2012) Chemotaxis of cell populations through confined spaces at single-cell resolution. PLoS One 7(1):e29211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stroka KM et al (2014) Water permeation drives tumor cell migration in confined microenvironments. Cell 157(3):611–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moeendarbary E et al (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9(9):730–736

    Article  CAS  PubMed  Google Scholar 

  69. Denais CM et al (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352(6283):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Charras G, Sahai E (2014) Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15(12):813–824

    Article  CAS  PubMed  Google Scholar 

  71. Chaudhuri O et al (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13(10):970–978

    Article  CAS  PubMed  Google Scholar 

  72. Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci U S A 108(27):11115–11120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang YL, Tung C-K, Zheng A, Kim BJ, Wu M (2015) Interstitial flows promote amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model. Integr Biol 7(11):1402–1411

    Article  CAS  Google Scholar 

  74. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A 111(7):2447–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li R et al (2017) Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res 77(2):279–290

    Article  CAS  PubMed  Google Scholar 

  76. Piotrowski-Daspit AS, Tien J, Nelson CM (2016) Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via snail, vimentin, and E-cadherin. Integr Biol 8(3):319–331

    Article  CAS  Google Scholar 

  77. Agastin S, Giang U-BT, Geng Y, Delouise LA, King MR (2011) Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics 5(2):24110

    Article  PubMed  CAS  Google Scholar 

  78. Sakai Y et al (2014) Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array. Biotechnol J 9(7):971–979

    Article  CAS  PubMed  Google Scholar 

  79. Anderberg C et al (2013) Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210(3):563–579. https://doi.org/10.1084/jem.20120662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roussos ET et al (2011) Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci 124(Pt 13):2120–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brábek J, Mierke CT, Rösel D, Veselý P, Fabry B (2010) The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mierke CT (2011) Cancer cells regulate biomechanical properties of human microvascular endothelial cells. J Biol Chem 286(46):40025–40037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3):185–196

    Article  CAS  PubMed  Google Scholar 

  84. Zheng Y et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109(24):9342–9347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113(12):3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shin MK, Kim SK, Jung H (2011) Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis. Lab Chip 11(22):3880–3887

    Article  CAS  PubMed  Google Scholar 

  87. Ehsan SM et al (2015) A three-dimensional in vitro model of tumor cell intravasation. Integr Biol 6(6):603–610

    Article  CAS  Google Scholar 

  88. Khuon S et al (2010) Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study. J Cell Sci 123(Pt 3):431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Whisler JA, Chen MB, Kamm RD (2014) Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng Part C Methods 20(7):543–552

    Article  CAS  PubMed  Google Scholar 

  90. Chen MB, Whisler JA, Jeon JS, Kamm RD (2013) Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol 5(10):1262–1271

    Article  CAS  Google Scholar 

  91. de la Loza MC D et al (2017) Laminin levels regulate tissue migration and anterior-posterior polarity during egg morphogenesis in drosophila. Cell Rep 20(1):211–223

    Article  CAS  Google Scholar 

  92. Yeon JH, Ryu HR, Chung M, Hu QP, Jeon NL (2012) In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12(16):2815–2822

    Article  CAS  PubMed  Google Scholar 

  93. Bockhorn M, Jain RK, Munn LL (2007) Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 8(5):444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wyckoff JB et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656

    Article  CAS  PubMed  Google Scholar 

  95. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3(12):921–930

    Article  CAS  PubMed  Google Scholar 

  96. Zervantonakis IK et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci 109(34):13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chiang SPH, Cabrera RM, Segall JE (2016) Tumor cell intravasation. Am J Physiol Cell Physiol 311(1):C1–C14

    Article  PubMed  PubMed Central  Google Scholar 

  98. Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13(12):858–870

    Article  CAS  PubMed  Google Scholar 

  99. Kraning-Rush CM et al (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li Y-H, Zhu C (1999) A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clin Exp Metastasis 17(5):423–429

    Article  CAS  PubMed  Google Scholar 

  101. Wong AD, Searson PC (2014) Live-cell imaging of invasion and intravasation in an artificial microvessel platform. Cancer Res 74:4937–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nashimoto Y et al (2017) Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol 9(6):506–518

    Article  Google Scholar 

  103. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KY (1988) Morphological study of the interaction of intra vascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48:4065–4072

    CAS  PubMed  Google Scholar 

  105. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27(1):41–55

    Article  PubMed  Google Scholar 

  106. Fidler IJ (2011) The role of the organ microenvironment in brain metastasis. Semin Cancer Biol 21(2):107–112

    Article  PubMed  Google Scholar 

  107. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  CAS  PubMed  Google Scholar 

  108. Miles FL, Pruitt FL, van Golen KL, Cooper CR (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25(4):305–324

    Article  CAS  PubMed  Google Scholar 

  109. Strell C et al (2012) Norepinephrine promotes the β1-integrin-mediated adhesion of MDA-MB-231 cells to vascular endothelium by the induction of a GROα release. Mol Cancer Res 10(2):197–207

    Article  CAS  PubMed  Google Scholar 

  110. Barthel SR et al (2013) Definition of molecular determinants of prostate cancer cell bone extravasation. Cancer Res 73(2):942–952

    Article  CAS  PubMed  Google Scholar 

  111. Matrone MA, Whipple RA, Balzer EM, Martin SS (2010) Microtentacles tip the balance of cytoskeletal forces in circulating tumor cells. Cancer Res 70(20):7737–7741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375

    Article  CAS  PubMed  Google Scholar 

  113. Auguste P et al (2007) The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 170(5):1781–1792

    Article  PubMed  PubMed Central  Google Scholar 

  114. Draffin JE, Mcfarlane S, Hill A, Johnston PG, Waugh DJJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64(16):5702–5711

    Article  CAS  PubMed  Google Scholar 

  115. Wang H, Hung Y, Su C, Peng S, Guo Y (2005) CD44 Cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (aLh2) and VLA-4 (a4h1). Exp Cell Res 304:116–126

    Article  CAS  PubMed  Google Scholar 

  116. Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD (2016) Elucidation of the roles of tumor integrin ss1 in the extravasation stage of the metastasis cascade. Cancer Res 76(9):2513–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Voura EB et al (2013) Proteolysis during tumor cell extravasation in vitro: metalloproteinase involvement across tumor cell types. PLoS One 8(10):e78413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zaman MH et al (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 103(29):10889–10894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Leong HS et al (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8(5):1558–1570

    Article  CAS  PubMed  Google Scholar 

  121. Ganguly KK, Pal S, Moulik S, Chatterjee A (2013) Integrins and metastasis. Cell Adhes Migr 7:251–261

    Article  Google Scholar 

  122. Palumbo JS et al (2017) Platelets and fibrin (ogen) increase metastatic potential by impeding natural killer cell – mediated elimination of tumor cells. Blood 105(1):178–186

    Article  CAS  Google Scholar 

  123. Erpenbeck L, Scho MP (2017) Review article deadly allies : the fatal interplay between platelets and metastasizing cancer cells. Blood 115(17):3427–3437

    Article  CAS  Google Scholar 

  124. Liu Y et al (2011) Tissue factor – activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res 71(20):6492–6503

    Article  CAS  PubMed  Google Scholar 

  125. Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S (2013) Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24(1):130–137

    Article  CAS  PubMed  Google Scholar 

  126. Borsig L, Wong R, Hynes RO, Varki NM, Varki A (2001) Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci U S A 99(4):2193–2198

    Article  CAS  Google Scholar 

  127. Granot Z et al (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20(3):300–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70(14):6071–6082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Labelle M, Begum S, Hynes RO (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 111(30):E3053–E3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7(4):452–464. https://doi.org/10.1215/S1152851705000232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang P, Goodrich C, Fu C, Dong C (2014) Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα-p38-SP-1 pathway. FASEB J 28(11):4591–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen MB et al (2017) On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc 12(5):865–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

EM was recipient of a Wellcome Trust-Massachusetts Institute of Technology Fellowship (WT103883). Funding from the Cancer Research UK (C57744/A22057) and CRUK-UCL Centre Award [C416/A25145] to EM and the US National Cancer Institute (U01 CA202177-01) to RK are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Kamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, M.B., Kamm, R.D., Moeendarbary, E. (2018). Engineered Models of Metastasis with Application to Study Cancer Biomechanics. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_10

Download citation

Publish with us

Policies and ethics