Skip to main content

Sensitivity Analysis and Hedging in Stochastic String Models

  • Chapter
  • First Online:
  • 817 Accesses

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

Abstract

We analyze certain results on the stochastic string modeling of the term structure of interest rates and we apply them to study the sensitivities and the hedging of options with payoff functions homogeneous of degree one. Under the same framework, we use an exact multi-factor extension of Jamshidian (1989) to find the sensitivities for swaptions and we prove that it cannot be applied to captions. We present a new approximate result for pricing options on coupon bonds based on the Fenton-Wilkinson method and we show that it generalizes the fast coupon bond option pricing proposed in Munk (1999). This result can be easily applied to the approximate valuation of swaptions and captions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the probabilistic setting and assumptions of the stochastic string framework, we refer the reader to Bueno-Guerrero et al. (2015a).

  2. 2.

    We will return to this problem in the next section.

  3. 3.

    Usually this assumption is satisfied with constant \( \varPhi_{i} ,\quad i = 0, 1, \ldots , n. \)

  4. 4.

    We state the result for calls as the put case can be obtained in a similar way.

References

  • Asmussen, S., Jensen, J. L., & Rojas-Nandayapa, L. (2016). Exponential family techniques for the lognormal left tail. Scandinavian Journal of Statistics, 43(3), 774–787.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Bueno-Guerrero, A., Moreno, M., & Navas, J. F. (2015a). Stochastic string models with continuous semimartingales. Physica A: Statistical Mechanics and its Applications, 433(1), 229–246.

    Article  Google Scholar 

  • Bueno-Guerrero, A., Moreno, M., & Navas, J. F. (2015b). Valuation of caps and swaptions under a stochastic string model. Working paper available online at http://ssrn.com/abstract=2438678.

  • Bueno-Guerrero, A., Moreno, M., & Navas, J. F. (2015c). Bond market completeness under stochastic strings with distribution-valued strategies. Working paper available online at http://ssrn.com/abstract=2598403.

  • Bueno-Guerrero, A., Moreno, M., & Navas, J. F. (2016). The stochastic string model as a unifying theory of the term structure of interest rates. Physica A: Statistical Mechanics and its Applications, 461(1), 217–237.

    Article  Google Scholar 

  • Choi, J., & Shin, S. (2016). Fast swaption pricing in gaussian term structure models. Mathematical Finance, 26(4), 962–982.

    Article  Google Scholar 

  • Collin-Dufresne, P., & Goldstein, R. S. (2002). Pricing swaptions within an affine framework. Journal of Derivatives, 10(1), 9–26.

    Article  Google Scholar 

  • Eberlein, E., & Kluge, W. (2005). Exact pricing formulae for caps and swaptions in a Lévy term structure model. Journal of Computational Finance, 9(2), 99–125.

    Article  Google Scholar 

  • Fenton, L. F. (1960). The sum of log-normal probability distributions in scatter transmission systems. IRE Transactions on Communication Systems, 8(1), 57–67.

    Article  Google Scholar 

  • Hull, J. C., & White, A. (1990). Pricing interest rate derivative securities. Review of Financial Studies, 3(4), 573–592.

    Article  Google Scholar 

  • Jamshidian, F. (1989). An exact bond option formula. Journal of Finance, 44(1), 205–209.

    Article  Google Scholar 

  • Kim, D. H. (2014). Swaption pricing in affine and other models. Mathematical Finance, 24(4), 790–820.

    Article  Google Scholar 

  • Moreno, M., & Navas, J. F. (2008). Australian options. Australian Journal of Management, 33(1), 69–93.

    Article  Google Scholar 

  • Munk, C. (1999). Stochastic duration and fast coupon bond option pricing in multi-factor models. Review of Derivatives Research, 3(2), 157–181.

    Article  Google Scholar 

  • Pirinen, P. (2003). Statistical power sum analysis for nonidentically distributed correlated lognormal signals. In Proceedings of the Finnish Signal Processing Symposium (FINSIG), pp. 254–258.

    Google Scholar 

  • Santa-Clara, P., & Sornette, D. (2001). The dynamics of the forward interest rate curve with stochastic string shocks. Review of Financial Studies, 14(1), 149–185.

    Article  Google Scholar 

  • Singleton, K. J., & Umantsev, L. (2002). Pricing coupon-bond options and swaptions in affine term structure models. Mathematical Finance, 12(4), 427–446.

    Article  Google Scholar 

  • Vidal, J. P., & Silva, P. M. (2014). Pricing swaptions under multifactor Gaussian HJM Models. Mathematical Finance, 24(4), 762–789.

    Article  Google Scholar 

  • Wei, J. Z. (1997). A simple approach to bond option pricing. Journal of Futures Markets, 17(2), 131–160.

    Article  Google Scholar 

Download references

Moreno and Navas gratefully acknowledge financial support by grants ECO2017-85927-P and P12-SEJ-1733. The usual caveat applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier F. Navas .

Editor information

Editors and Affiliations

Appendix of Proofs

Appendix of Proofs

Proof of Theorem 2

Using the Euler Theorem for homogeneous functions, the equality

$$ g\left( {x_{1} , \ldots , x_{n} ;M} \right)e^{{\sqrt {\varDelta_{kk} } x_{k} - \frac{1}{2}\varDelta_{kk} }} = g\left( {x_{1} - \frac{{\varDelta_{1k} }}{{\sqrt {\varDelta_{11} } }}, \ldots , x_{n} - \frac{{\varDelta_{nk} }}{{\sqrt {\varDelta_{nn} } }};M} \right) $$
(6)

and \( \varDelta_{00 } = 0, \) expression (1) can be rewritten as

$$ \varvec{C}\left[ {t,\varvec{P}_{t} } \right] = \sum\limits_{k = 0}^{n} {\varPhi_{k} P\left( {t,T_{k} } \right)\int\limits_{{x_{1} = - \infty }}^{ + \infty } { \ldots \int\limits_{{x_{j} = \tilde{x}_{j} }}^{ + \infty } { \ldots \int\limits_{{x_{n} = - \infty }}^{ + \infty } {g\left( {x_{1} - \frac{{\varDelta_{1k} }}{{\sqrt {\varDelta_{11} } }}, \ldots , x_{n} - \frac{{\varDelta_{nk} }}{{\sqrt {\varDelta_{nn} } }};M} \right)d\varvec{x}} } } } $$

Taking derivative with respect to \( P\left( {t,T_{0} } \right) \) and using \( \varDelta_{i0 } = 0 \) we obtain the first sensitivity. The second one follows from a similar calculation.

For the next derivative, taking into account that \( \tilde{x}_{l} \) is independent of \( \varDelta_{ij } \) , we have

$$ \frac{{\partial \varvec{C}\left[ {t,\varvec{P}_{t} } \right]}}{{\partial \varDelta_{ij} }} = \sum\limits_{k = 0}^{n} {\varPhi_{k} P\left( {t,T_{k} } \right)\int\limits_{{x_{1} = - \infty }}^{ + \infty } { \ldots \int\limits_{{x_{l} = \tilde{x}_{l} }}^{ + \infty } { \ldots \int\limits_{{x_{n} = - \infty }}^{ + \infty } {\frac{{\partial g\left( {x_{1} , \ldots , x_{n} ;M} \right)}}{{\partial \varDelta_{ij} }}e^{{\sqrt {\varDelta_{kk} } x_{k} - \frac{1}{2}\varDelta_{kk} }} d\varvec{x}} } } } $$
(7)

The partial derivative of the Gaussian density can be obtained as

$$ \begin{aligned} \frac{{\partial g\left( {x_{1} , \ldots , x_{n} ;M} \right)}}{{\partial \varDelta_{ij} }} & = g\left( {x_{1} , \ldots , x_{n} ;M} \right)\frac{{\partial \,\ln g\left( {x_{1} , \ldots , x_{n} ;M} \right)}}{{\partial \varDelta_{ij} }} \\ & = - \frac{1}{2}g\left( {x_{1} , \ldots , x_{n} ;M} \right)\left[ {\frac{{\partial \,\ln \left| \varvec{M} \right|}}{{\partial \varDelta_{ij} }} + \frac{\partial }{{\partial \varDelta_{ij} }}\left( {\varvec{x}^{T} \varvec{M}^{ - 1} \varvec{x}} \right)} \right] \\ & = g\left( {x_{1} , \ldots , x_{n} ;M} \right)\frac{1}{{\sqrt {\varDelta_{ii} } \sqrt {\varDelta_{jj} } }}\left[ {\left( {\varvec{M}^{ - 1} \varvec{xx}^{T} \varvec{M}^{ - 1} } \right)_{{\varvec{ij}}} - \left( {\varvec{M}^{ - 1} } \right)_{{\varvec{ij}}} } \right] \\ & = g\left( {x_{1} , \ldots , x_{n} ;M} \right)\left[ {\varvec{D} \circ \left( {\varvec{M}^{ - 1} \varvec{xx}^{T} \varvec{M}^{ - 1} - \varvec{M}^{ - 1} } \right)} \right]_{ij} \\ \end{aligned} $$
(8)

where we have used the definition of \( M_{ij } \), the chain rule, the symmetry of M and the equalities \( \frac{{\partial \, \ln \left| \varvec{M} \right|}}{{\partial M_{ij} }} = 2(\varvec{M}^{ - 1} )_{{\varvec{ij}}} \) and \( \frac{\partial }{{\partial M_{ij} }}\left( {\varvec{x}^{T} \varvec{M}^{ - 1} \varvec{x}} \right) = - 2\left( {\varvec{M}^{ - 1} \varvec{xx}^{T} \varvec{M}^{ - 1} } \right)_{{\varvec{ij}}} \). Replacing (8) in (7) we arrive at the expression for \( \frac{{\partial \varvec{C}\left[ {t,\varvec{P}_{t} } \right]}}{{\partial \varDelta_{ij} }}. \)

For the last sensitivity we have

$$ \begin{aligned} \frac{{\partial \user2{C}\left[ {t,\user2{P}_{t} } \right]}}{{\partial \Delta _{{ii}} }} & = \frac{\partial }{{\partial \Delta _{{ii}} }}\sum\limits_{{k = 0}}^{n} {\Phi _{k} P\left( {t,T_{k} } \right)\int\limits_{{x_{1} = - \infty }}^{{ + \infty }} { \ldots \int\limits_{{x_{i} = \tilde{x}_{i} }}^{{ + \infty }} \ldots } } \\ & \quad \quad \int\limits_{{x_{n} = - \infty }}^{{ + \infty }} {g\left( {x_{1} - \frac{{\Delta _{{1k}} }}{{\sqrt {\Delta _{{11}} } }}, \ldots ,x_{n} - \frac{{\Delta _{{nk}} }}{{\sqrt {\Delta _{{nn}} } }};M} \right)d\user2{x}} = - \sum\limits_{{k = 0}}^{n} {\Phi _{k} P\left( {t,T_{k} } \right)} \\ & \quad \times \int\limits_{{x_{1} = - \infty }}^{{ + \infty }} { \ldots \int\limits_{{x_{{i - 1}} = - \infty }}^{{ + \infty }} {\int\limits_{{x_{{i + 1}} = - \infty }}^{{ + \infty }} { \ldots \int\limits_{{x_{n} = - \infty }}^{{ + \infty }} {g\left( {x_{1} - \frac{{\Delta _{{1k}} }}{{\sqrt {\Delta _{{11}} } }}, \ldots ,\tilde{x}_{i} } \right.} } } } \\ & \quad \left. { - \frac{{\Delta _{{ik}} }}{{\sqrt {\Delta _{{ii}} } }}, \ldots ,x_{n} - \frac{{\Delta _{{nk}} }}{{\sqrt {\Delta _{{nn}} } }};M} \right) \times \frac{{\partial \tilde{x}_{i} }}{{\partial \Delta _{{ii}} }}d\user2{x}_{i} + \sum\limits_{{k = 0}}^{n} {\Phi _{k} P\left( {t,T_{k} } \right)\int\limits_{{x_{1} = - \infty }}^{{ + \infty }} \ldots } \\ & \quad \quad \int\limits_{{x_{i} = \tilde{x}_{i} }}^{{ + \infty }} { \ldots \int\limits_{{x_{n} = - \infty }}^{{ + \infty }} {\frac{\partial }{{\partial \Delta _{{ii}} }}g\left( {x_{1} - \frac{{\Delta _{{1k}} }}{{\sqrt {\Delta _{{11}} } }}, \ldots ,x_{n} - \frac{{\Delta _{{nk}} }}{{\sqrt {\Delta _{{nn}} } }};M} \right)d\user2{x}} } \\ \end{aligned} $$
(9)

Moreover, we have

$$ \frac{{\partial \tilde{x}_{i} }}{{\partial \varDelta_{ii} }} = - \frac{1}{{2\sqrt {\varDelta_{ii} } }}\left( {\frac{1}{{\varDelta_{ii} }}\ln \left( { - \frac{1}{{\varPhi_{i} P\left( {t,T_{i} } \right)}}\sum\limits_{{\begin{array}{*{20}c} {m = 0} \\ {m \ne i} \\ \end{array} }}^{n} {\varPhi_{m} P\left( {t,T_{m} } \right)e^{{\sqrt {\varDelta_{mm} } x_{m} - \frac{1}{2}\varDelta_{mm} }} } } \right) - \frac{1}{2}} \right) $$
(10)

For the second one, by the chain rule we have

$$ \begin{aligned} \frac{{\partial g\left( {x_{1} , \ldots , x_{n} ;M} \right)}}{{\partial \varDelta_{ii} }} & = \sum\limits_{{\begin{array}{*{20}c} {m = 1} \\ {m \ne i} \\ \end{array} }}^{n} {\frac{{\partial M_{im} }}{{\partial \varDelta_{ii} }}\frac{{\partial g\left( {x_{1} , \ldots , x_{n} ;M} \right)}}{{\partial M_{im} }}} \\ & = - \frac{1}{{2\varDelta_{ii} \sqrt {\varDelta_{ii} } }}\sum\limits_{{\begin{array}{*{20}c} {m = 1} \\ {m \ne i} \\ \end{array} }}^{n} {\frac{{\varDelta_{im} }}{{\sqrt {\varDelta_{mm} } }}\frac{{\partial g\left( {x_{1} , \ldots , x_{n} ;M} \right)}}{{\partial M_{im} }}} \\ & = - \frac{1}{{2\varDelta_{ii} }}\sum\limits_{{\begin{array}{*{20}c} {m = 1} \\ {m \ne i} \\ \end{array} }}^{n} {\varDelta_{im} \frac{{\partial g\left( {x_{1} , \ldots , x_{n} ;M} \right)}}{{\partial \varDelta_{im} }}} \\ \end{aligned} $$

Using expressions (6) and (8) and the definition of \( M_{ij } \) , we get

$$ \begin{aligned} & \frac{\partial }{{\partial \varDelta_{ii} }}g\left( {x_{1} - \frac{{\varDelta_{1k} }}{{\sqrt {\varDelta_{11} } }}, \ldots , x_{n} - \frac{{\varDelta_{nk} }}{{\sqrt {\varDelta_{nn} } }};M} \right) \\ & \quad = \frac{1}{2}g\left( {x_{1} - \frac{{\varDelta_{1k} }}{{\sqrt {\varDelta_{11} } }}, \ldots , x_{n} - \frac{{\varDelta_{nk} }}{{\sqrt {\varDelta_{nn} } }};M} \right) \\ & \quad\quad \times \left( {\frac{1}{{\varDelta_{ii} }}\sum\limits_{{\begin{array}{*{20}c} {\varvec{m} = 1} \\ {\varvec{m} \ne i} \\ \end{array} }}^{\varvec{n}} {\left[ {\varvec{M} \circ \left( {\varvec{M}^{ - 1} \varvec{xx}^{T} \varvec{M}^{ - 1} - \varvec{M}^{ - 1} } \right)} \right]_{{\varvec{im}}} - \delta_{{\varvec{i}k}} \left( {\frac{{x_{k} }}{{\sqrt {\varDelta_{kk} } }} - 1} \right)} } \right) \\ \end{aligned} $$
(11)

Replacing (10) and (11) in (9) we obtain the last sensitivity.

Proof of Theorem 4

Bueno-Guerrero et al. (2015b) showed that the exact price of a coupon bond call in the Gaussian stochastic string framework is given by

$$ \begin{aligned} \varvec{Call}_{K} \left[ {t,\varvec{P}_{t} } \right] & = \int\limits_{{{\varOmega }_{t} }} {g\left( {x_{1} , \ldots , x_{n} ;M} \right)\sum\limits_{i = 1}^{n} {C_{i} P\left( {t,T_{i} } \right)e^{{\sqrt {\varDelta_{ii} } x_{i} - \frac{1}{2}\varDelta_{ii} }} d\varvec{x}} } \\ & \quad - KP\left( {t,T_{0} } \right)\int\limits_{{{\varOmega }_{t} }}^{{}} { g\left( {x_{1} , \ldots , x_{n} ;M} \right)d\varvec{x}} \\ \end{aligned} $$
(12)

where

$$ {\varOmega }_{t} = \left\{ {\varvec{x} \in {\mathbb{R}}^{n} :\sum\limits_{i = 1}^{n} {C_{i} P\left( {t,T_{i} } \right)e^{{\sqrt {\varDelta_{ii} } x_{i} - \frac{1}{2}\varDelta_{ii} }} } - KP\left( {t,T_{0} } \right) > 0} \right\} $$

Define \( {\text{y}}_{i} = \sqrt {\varDelta_{ii} } x_{i} - \frac{1}{2}\varDelta_{ii} \). As \( x_{i} \) has a standard normal distribution, \( {\text{y}}_{i} \sim N\left( { - \frac{1}{2}\varDelta_{ii} ,\varDelta_{ii} } \right) \) and then

\( {\text{w}}_{i} e^{{y_{i} }} \sim {\text{log }}N\left( { - \frac{1}{2}\varDelta_{ii} + \ln {\text{w}}_{i} ,\varDelta_{ii} } \right). \)

Define \( {\text{l}}_{i} = \log N\left( {m_{li} ,\sigma_{{{\text{l}}_{i} }}^{2} } \right). \)The Fenton-Wilkinson method allows to approximate \( \sum\nolimits_{i = 1}^{n} {l_{i} } \) by another lognormal variable \( Z\sim \, \log N\left( {m_{z} ,\sigma_{z}^{2} } \right) \) with

$$ m_{z} = 2 \, {\text{ln}}\,{\text{u}}_{1} - \frac{1}{2} {\text{ln}}\,{\text{u}}_{2} ,\quad \sigma_{z}^{2} = {\ln} \,{\text{u}}_{2} - 2 \, \ln {\text{u}}_{1} $$

where

$$ \begin{aligned} {\text{u}}_{1} & = \sum\limits_{i = 1}^{n} {e^{{m_{{l_{i} }} + \frac{1}{2}\sigma_{{{\text{l}}_{i} }}^{2} }} } \\ {\text{u}}_{2} & = \sum\limits_{i = 1}^{n} {e^{{2\left( {m_{{l_{i} }} + \sigma_{{{\text{l}}_{i} }}^{2} } \right)}} } + 2\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {e^{{m_{{l_{i} }} + m_{lj} }} e^{{\frac{1}{2}\left( {\sigma_{{{\text{l}}_{i} }}^{2} + \sigma_{{{\text{l}}_{j} }}^{2} + 2r_{ij} \sigma_{{{\text{l}}_{i} }} \sigma_{{{\text{l}}_{j} }} } \right)}} } } \\ \end{aligned} $$

and \( r_{ij} = {\text{corr}}\left( {l_{i} ,l_{j} } \right) \) (see Pirinen 2003).

In our case, we have \( {\text{l}}_{i} = {\text{w}}_{i} e^{{y_{i} }} , r_{ij} = M_{ij} \) , \( u_{1} = 1 \) and \( {\text{u}}_{2} = \sum\nolimits_{i, j = 1}^{n} {w_{i} w_{j} e^{{\varDelta_{ij} }} } \) . Then,

$$ m_{z} = - \frac{1}{2} {\text{ln}}\sum\limits_{i, j = 1}^{n} {w_{i} w_{j} e^{{\varDelta_{ij} }} } ,\quad \sigma_{z}^{2} = - 2\,m_{z} $$
(13)

Defining \( \varDelta \) by \( {\text{Z}} = \sqrt \varDelta x_{1} - \frac{1}{2}\varDelta \) we have \( m_{z} = - \frac{1}{2}\varDelta \) and \( \sigma_{z}^{2} = \varDelta \) , which replaced in (13) give

$$ \varDelta = \ln \sum\limits_{i, j = 1}^{n} {w_{i} w_{j} e^{{\varDelta_{ij} }} } $$

Thus we can make \( \sum\nolimits_{i, j = 1}^{n} {{\text{w}}_{i} e^{{y_{i} }} } \simeq e^{{\sqrt \varDelta x_{1} - \frac{1}{2}\varDelta }} \) and rewrite (12) approximately as

$$ \begin{aligned} \user2{Call}_{K} \left[ {t,\user2{P}_{t} } \right] & \simeq \sum\limits_{{i = 1}}^{n} {C_{i} P\left( {t,T_{i} } \right)} \int\limits_{{\widehat{\Omega }_{t} }} {g\left( {x_{1} , \ldots ,x_{n} ;M} \right)e^{{\sqrt \Delta x_{1} - \frac{1}{2}\Delta }} d\user2{x}} \\ & \quad \quad - KP\left( {t,T_{0} } \right)\int\limits_{{\widehat{\Omega }_{t} }}^{{}} {g\left( {x_{1} , \ldots ,x_{n} ;M} \right)d\user2{x}} \\ \end{aligned} $$

with

$$ \widehat{\varOmega }_{t} = \left\{ {\varvec{x} \in {\mathbb{R}}^{n} :\sum\limits_{i = 1}^{n} {C_{i} P\left( {t,T_{i} } \right)e^{{\sqrt \varDelta x_{1} - \frac{1}{2}\varDelta }} } - KP\left( {t,T_{0} } \right) > 0} \right\} $$

Integrating in \( x_{2} , \ldots , x_{n} \), we get

$$ \begin{aligned} & \user2{Call}_{K} \left[ {t,\user2{P}_{t} } \right] \simeq \sum\limits_{{i = 1}}^{n} {C_{i} P\left( {t,T_{i} } \right)\int\limits_{{\frac{1}{{\sqrt \Delta }}\left[ {\ln \left( {\frac{{\hat{K}P\left( {t,T_{0} } \right)}}{{P\left( {t,t + \hat{D}(t)} \right)}}} \right) + \frac{1}{2}\Delta } \right]}}^{{ + \infty }} {g\left( {x - \sqrt \Delta ;1} \right)dx} - KP\left( {t,T_{0} } \right)} \\ & \quad \int\limits_{{\ln \left( {\frac{{\hat{K}P\left( {t,T_{0} } \right)}}{{P\left( {t,t + \hat{D}(t)} \right)}}} \right) + \frac{1}{2}\Delta }}^{{ + \infty }} {g(x;1)dx} = \frac{{\sum\nolimits_{{i = 1}}^{n} {C_{i} P\left( {t,T_{i} } \right)} }}{{P\left( {t,t + \hat{D}(t)} \right)}}\left[ {P\left( {t,t + \hat{D}(t)} \right)\phi \left( {\frac{{\ln \left( {\frac{{P\left( {t,t + \hat{D}(t)} \right)}}{{\hat{K}P\left( {t,T_{0} } \right)}}} \right) + \frac{1}{2}\Delta }}{{\sqrt \Delta }}} \right)} \right. \\ & \quad \left. { - \hat{K}P\left( {t,T_{0} } \right)\phi \left( {\frac{{\ln \left( {\frac{{P\left( {t,t + \hat{D}(t)} \right)}}{{\hat{K}P\left( {t,T_{0} } \right)}}} \right) - \frac{1}{2}\Delta }}{{\sqrt \Delta }}} \right)} \right] = \frac{{\sum\nolimits_{{i = 1}}^{n} {C_{i} P\left( {t,T_{i} } \right)} }}{{P\left( {t,t + \hat{D}(t)} \right)}}\user2{Call}_{{\hat{K}}} \left( {t,T_{0} ,t + \hat{D}(t)} \right) \\ \end{aligned} $$

Proof of Corollary 3

We write expression (5) under the multifactor HJM stochastic string case (see Bueno-Guerrero et al. 2016) given by \( R_{t} (u,y) = \sum\nolimits_{k = 0}^{m} {\sigma_{HJM}^{(k)} (t,u)\sigma_{HJM}^{(k)} (t,y)} \) where \( \sigma_{HJM}^{(k)} (t,u),k = 0, 1, \ldots ,m \) are the HJM volatilities in the Musiela parameterization. Expression (5) becomes

$$ \begin{aligned} & \int\limits_{t = s}^{{T_{0} }} {\sum\limits_{k = 0}^{m} {\left[ {\int\limits_{{y = T_{0} - t}}^{{\widehat{D}(t)}} {\sigma_{HJM}^{(k)} (t,y)dy} } \right]^{2} dt} } \\ & \quad = \ln \sum\limits_{i,j = 1}^{n} {w_{i} w_{j} } \exp \left\{ {\int\limits_{t = s}^{{T_{0} }} {\mathop \sum \limits_{k = 0}^{m} \left[ {\mathop \int \limits_{{u = T_{0} - t}}^{{T_{i} - t}} \sigma_{HJM}^{(k)} (t,u)du} \right]\left[ {\int\limits_{{y = T_{0} - t}}^{{T_{j} - t}} {\sigma_{HJM}^{(k)} (t,y)dy} } \right]dt} } \right\} \\ \end{aligned} $$

Taking derivative with respect to s provides

$$ \begin{aligned} & \mathop \sum \limits_{k = 0}^{m} \left[ {\mathop \int \limits_{{y = T_{0} - s}}^{{\widehat{D}(s)}} \sigma_{HJM}^{\left( k \right)} \left( {s,y} \right)dy} \right]^{2} \\ & \quad = \mathop \sum \limits_{k = 0}^{m} \mathop \sum \limits_{i,j = 1}^{n} w_{ij} \left[ {\mathop \int \limits_{{u = T_{0} - s}}^{{T_{i} - s}} \sigma_{HJM}^{\left( k \right)} \left( {s,u} \right)du} \right]\left[ {\mathop \int \limits_{{y = T_{0} - s}}^{{T_{j} - s}} \sigma_{HJM}^{\left( k \right)} \left( {s,y} \right)dy} \right] \\ \end{aligned} $$
(14)

with

$$ \begin{aligned} & w_{ij} \left( {s,T_{0} } \right) \\ & \quad = \frac{{w_{i} w_{j} { \exp }\left\{ {\int_{t = s}^{{T_{0} }} {\sum\nolimits_{k = 0}^{m} {\left[ {\int_{{u = T_{0} - t}}^{{T_{i} - t}} {\sigma_{HJM}^{(k)} (t,u)du} } \right]\left[ {\int_{{y = T_{0} - t}}^{{T_{j} - t}} {\sigma_{HJM}^{(k)} (t,y)dy} } \right]dt} } } \right\}}}{{\sum\nolimits_{i,j = 1}^{n} {w_{i} w_{j} { \exp }\left\{ {\int_{t = s}^{{T_{0} }} {\sum\nolimits_{k = 0}^{m} {\left[ {\int_{{u = T_{0} - t}}^{{T_{i} - t}} {\sigma_{HJM}^{(k)} (t,u)du} } \right]\left[ {\int_{{y = T_{0} - t}}^{{T_{j} - t}} {\sigma_{HJM}^{(k)} (t,y)dy} } \right]dt} } } \right\}} }} \\ \end{aligned} $$
(15)

and \( \mathop \sum \limits_{i,j = 1}^{n} w_{ij} \left( {s,T_{0} } \right) = 1. \) Replacing \( T_{0} \) by \( s \) in expressions (14) and (15), we get

$$ \sum\limits_{k = 0}^{m} {\left[ {\int\limits_{y = 0}^{{\widehat{D}(s)}} {\sigma_{HJM}^{(k)} (s,y)dy} } \right]^{2} } = \sum\limits_{k = 0}^{m} {\left[ {\sum\limits_{i = 1}^{n} {w_{i} \int\limits_{u = 0}^{{T_{i} - s}} {\sigma_{HJM}^{(k)} (s,u)du} } } \right]^{2} } $$

that is exactly the definition of the stochastic duration in Munk (1999) for the HJM case.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno-Guerrero, A., Moreno, M., Navas, J.F. (2018). Sensitivity Analysis and Hedging in Stochastic String Models. In: Mili, M., Samaniego Medina, R., di Pietro, F. (eds) New Methods in Fixed Income Modeling. Contributions to Management Science. Springer, Cham. https://doi.org/10.1007/978-3-319-95285-7_9

Download citation

Publish with us

Policies and ethics