Skip to main content

A Comparison of Estimation Techniques for the Covariance Matrix in a Fixed-Income Framework

  • Chapter
  • First Online:
New Methods in Fixed Income Modeling

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

  • 858 Accesses

Abstract

We compare various methodologies to estimate the covariance matrix in a fixed-income portfolio. Adopting a statistical approach for the robust estimation of the covariance matrix, we compared the Shrinkage (SH), the Nonlinear Shrinkage (NSH), the Minimum Covariance Determinant (MCD) and the Minimum Regularised Covariance Determinant (MRCD) estimators against the sample covariance matrix, here employed as a benchmark. The comparison was run in an application aimed at individuating the principal components of the US term structure curve. The contribution of the work mainly resides in the fact that we give a freshly new application of the MRCD and the NS robust covariance estimators within the fixed-income framework. Results confirm that, likewise financial portfolios, also fixed-income portfolios can benefit of using robust statistical methodologies for the estimation of the covariance matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As explained in Boudt et al. (2017), S* is a transformation of the sample covariance matrix SU(H), obtained as: \( S^{*} = \Lambda ^{1/2} Q^{{\prime }} S_{U} \left( H \right)Q\Lambda ^{1/2} \).

  2. 2.

    Principal Component Analysis (Hotelling 1933) is a dimension reduction technique that works on a covariance (or correlation) matrix identifying the volatility factors that drive the time series under investigation. The PCA relies on the spectral decomposition of the covariance matrix \( \Sigma \):

    $$ \Sigma = {\text{G}}\Omega {\text{G}}^{{\prime }} $$

    where G is the square matrix of the eigenvalues of \( \Sigma \), and \( \Omega \) is a diagonal matrix filled with the eigenvalues of the covariance matrix. The principal components are given by the normalized eigenvectors, ranked in descendant order according to the size of related eigenvalues. This because the total variance is equal to the sum of all the eigenvalues, so that the size of a single eigenvalues is the percentage of total variance explained. As a limited number of eigenvalues is usually enough to explain at least the 99% of total variation, the reduction of the covariance matrix can be performed by retaining only the eigenvalues that explain a certain threshold of the variance, eliminating the others.

  3. 3.

    The sample and MCD methodologies are estimated using MATLAB embedded functions. The Shrinkage code is from Ledoit and Wolf (2004b), while the Nonlinear Shrinkage is estimated with the nlshrink R package, https://rdrr.io/cran/nlshrink/man/nlshrink.html, and the MRCD is from the KU Leuven webpage, https://wis.kuleuven.be/stat/robust/Programs/MRCD.

References

  • Agulló, J., Croux, C., & Van Aelst, S. (2008). The multivariate least-trimmed squares estimator. Journal of Multivariate Analysis, 99(3), 311–338.

    Article  Google Scholar 

  • Anderberg, M. R. (1973). Cluster analysis for applications. Monographs and textbooks on probability and mathematical statistics.

    Google Scholar 

  • Anderson, T. W. (1963). Asymptotic theory for principal component analysis. The Annals of Mathematical Statistics, 34(1), 122–148.

    Article  Google Scholar 

  • Bengtsson, C., & Holst, J. (2002). On portfolio selection: Improved covariance matrix estimation for Swedish asset returns. Univ.

    Google Scholar 

  • Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28–43.

    Article  Google Scholar 

  • Boudt, K., Rousseeuw, P., Vanduffel, S., & Verdonck, T. (2017). The minimum regularized covariance determinant estimator.

    Google Scholar 

  • Candela, J. A. (1996). Exact iterative computation of the multivariate minimum volume ellipsoid estimator with a branch and bound algorithm. In COMPSTAT (pp. 175–180). Springer.

    Google Scholar 

  • Chen, Y., Wiesel, A., Eldar, Y. C., & Hero, A. O. (2010). Shrinkage algorithms for MMSE covariance estimation. IEEE Transactions on Signal Processing, 58(10), 5016–5029.

    Article  Google Scholar 

  • Croux, C., & Haesbroeck, G. (1999). Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. Journal of Multivariate Analysis, 71(2), 161–190.

    Article  Google Scholar 

  • Fan, J., Peng, H., Huang, T., & Ren, Y. (2005). Theory and methods-rejoinder-semilinear high-dimensional model for normalization of microarray data: A theoretical analysis and partial consistency. Journal of the American Statistical Association, 100(471), 808–813.

    Article  Google Scholar 

  • Fisher, T. J., & Sun, X. (2011). Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix. Computational Statistics & Data Analysis, 55(5), 1909–1918.

    Article  Google Scholar 

  • Frahm, G., & Jaekel, U. (2005). Random matrix theory and robust covariance matrix estimation for financial data. arXiv preprint physics/0503007.

    Google Scholar 

  • Hawkins, D. M., & McLachlan, G. J. (1997). High-breakdown linear discriminant analysis. Journal of the American Statistical Association, 92(437), 136–143.

    Article  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417.

    Article  Google Scholar 

  • Hubert, M., Rousseeuw, P. J., & Vanden Branden, K. (2005). ROBPCA: A new approach to robust principal component analysis. Technometrics, 47(1), 64–79.

    Article  Google Scholar 

  • Ledoit, O., & Péché, S. (2011). Eigenvectors of some large sample covariance matrix ensembles. Probability Theory and Related Fields, 151(1), 233–264.

    Article  Google Scholar 

  • Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603–621.

    Article  Google Scholar 

  • Ledoit, O., & Wolf, M. (2004a). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88(2), 365–411.

    Article  Google Scholar 

  • Ledoit, O., & Wolf, M. (2004b). Honey, I shrunk the sample covariance matrix. The Journal of Portfolio Management, 30(4), 110–119.

    Article  Google Scholar 

  • Ledoit, O., & Wolf, M. (2012). Nonlinear shrinkage estimation of large-dimensional covariance matrices. The Annals of Statistics, 40(2), 1024–1060.

    Article  Google Scholar 

  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 13–37.

    Google Scholar 

  • Litterman, R. B., & Scheinkman, J. (1991). Common factors affecting bond returns. The Journal of Fixed Income, 1(1), 54–61.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Martellini, L., Priaulet, P., & Priaulet, S. (2003). Fixed-income securities: Valuation, risk management and portfolio strategies (Vol. 237). New York: Wiley.

    Google Scholar 

  • Mehta, M. L. (1990). ‘Random matrices.’ Academic Press, 2nd edn.

    Google Scholar 

  • Michaud, R. O. (1989). The Markowitz optimization enigma: Is ‘optimized’ optimal? Financial Analysts Journal, 45(1), 31–42.

    Article  Google Scholar 

  • Michaud, R. O., & Michaud, R. O. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Oxford University Press.

    Google Scholar 

  • Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance, 58(4), 1651–1683.

    Article  Google Scholar 

  • Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21(3), 279–292.

    Article  Google Scholar 

  • Pafka, S., Potters, M., & Kondor, I. (2004). Exponential weighting and random-matrix-theory-based filtering of financial covariance matrices for portfolio optimization. arXiv preprint cond-mat/0402573.

    Google Scholar 

  • Pantaleo, E., Tumminello, M., Lillo, F., & Mantegna, R. N. (2011). When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators. Quantitative Finance, 11(7), 1067–1080.

    Article  Google Scholar 

  • Pison, G., Rousseeuw, P. J., Filzmoser, P., & Croux, C. (2003). Robust factor analysis. Journal of Multivariate Analysis, 84(1), 145–172.

    Article  Google Scholar 

  • Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360.

    Article  Google Scholar 

  • Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880.

    Google Scholar 

  • Rousseeuw, P., & Yohai, V. (1984). Robust regression by means of S-estimators. In Robust and nonlinear time series analysis (pp. 256–272). Springer, New York.

    Google Scholar 

  • Rousseeuw, P. J., & Driessen, K. V. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), 212–223.

    Article  Google Scholar 

  • Rousseeuw, P. J., Van Aelst, S., Van Driessen, K., & Gulló, J. A. (2004). Robust multivariate regression. Technometrics, 46(3), 293–305.

    Article  Google Scholar 

  • Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4(1).

    Google Scholar 

  • Schyns, M. (2008). Robust portfolio selection. JSM Proceedings, Statistical Computing Section.

    Google Scholar 

  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442.

    Google Scholar 

  • Stein, C. (1956, January). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, No. 399, pp. 197–206).

    Google Scholar 

  • Tola, V., Lillo, F., Gallegati, M., & Mantegna, R. N. (2008). Cluster analysis for portfolio optimization. Journal of Economic Dynamics and Control, 32(1), 235–258.

    Article  Google Scholar 

  • Wolf, M. (2004). Resampling vs. shrinkage for benchmarked managers.

    Google Scholar 

  • Woodruff, D. L., & Rocke, D. M. (1994). Computable robust estimation of multivariate location and shape in high dimension using compound estimators. Journal of the American Statistical Association, 89(427), 888–896.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Neffelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neffelli, M., Resta, M. (2018). A Comparison of Estimation Techniques for the Covariance Matrix in a Fixed-Income Framework. In: Mili, M., Samaniego Medina, R., di Pietro, F. (eds) New Methods in Fixed Income Modeling. Contributions to Management Science. Springer, Cham. https://doi.org/10.1007/978-3-319-95285-7_6

Download citation

Publish with us

Policies and ethics