Skip to main content

Real–Time Virtual Reality Visualizer for Unmanned Aerial Vehicles

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Abstract

The visualization of tele-operated and autonomous executions in the field becomes difficult if the real environments are located in remote areas or present potential dangers for visualizing clients. This work proposes an application based on virtual reality to recreate in real time the execution tasks of a UAV, which is operated remotely or autonomously on a real environment. To achieve a third level of immersion, the reconstruction of the real environment where the field tests are executed is considered, offering the possibility of knowing the real scenario where the tests are executed. The consideration of using commercial UAV development kits is taken into account to obtain internal information, as well as to control the drone from client devices. The results presented validate the unification of 3D models and the reconstruction of the environment, as well as the consumption of vehicle information and climate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nat. Int. J. Sci. 521(1), 460–466 (2015)

    Google Scholar 

  2. Hassanalian, M., Abdelkefi, A.: Classifications, applications, and design challenges of drones: a review. Prog. Aerosp. Sci. 91(1), 99–131 (2017)

    Article  Google Scholar 

  3. Câmara, D.: Cavalry to the rescue: drones fleet to help rescuers operations over disasters scenarios. In: Antenna Measurements & Applications (CAMA), vol. 2015(1) (2015)

    Google Scholar 

  4. Andaluz, V.H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27857-5_43

    Chapter  Google Scholar 

  5. Chmaj, G., Selvaraj, H.: Distributed processing applications for UAV/drones: a survey. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds.) Progress in Systems Engineering. AISC, vol. 366, pp. 449–454. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-08422-0_66

    Chapter  Google Scholar 

  6. Daftry, S., Hoppe, C., Bischof, H.: Building with drones: accurate 3D facade reconstruction using MAVs. In: Robotics and Automation (ICRA), vol. 2015, no. 1, pp. 3487–3494 (2015)

    Google Scholar 

  7. Balletti, C., Guerra, F., Scocca, V., Gottardi, C.: 3D integrated methodologies for the documentation and the virtual reconstruction of an archaeological site. Digit. Heritage 5(1), 215–222 (2015)

    Google Scholar 

  8. Francesco, N., Fabio, R.: UAV for 3D mapping applications: a review. Appl. Geomat. 6(1), 1–15 (2014)

    Article  Google Scholar 

  9. Sarkar, A., Patel, K.A., Ram, R.G., Capoor, G.K.: Gesture control of drone using a motion controller. In: Industrial Informatics and Computer Systems (CIICS), vol. 2016(1), pp. 1–5 (2016)

    Google Scholar 

  10. Andaluz, V.H., Chicaiza, F.A., Meythaler, A., Rivas, D.R., Chuchico, C.P.: Construction of a quadcopter for autonomous and teleoperated navigation. In: Design of Circuits and Integrated Systems (DCIS), vol. 2015(1), pp. 1–7 (2015)

    Google Scholar 

  11. Andaluz, V.H., Quevedo, W.X., Chicaiza, F.A., Varela, J., Gallardo, C., Sánchez, J.S., Arteaga, O.: Transparency of a bilateral tele-operation scheme of a mobile manipulator robot. In: Augmented Reality, Virtual Reality, and Computer Graphics, vol. 9768, no. 1, pp. 228–245 (2016)

    Google Scholar 

  12. Kothari, M., Postlethwaite, I., Gu, D.-W.: UAV path following in windy urban environments. J. Intell. Robot. Syst. 74(3–4), 1013–1028 (2014)

    Article  Google Scholar 

  13. Kendoul, F., Yu, Z., Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot. 27(3), 311–334 (2010)

    Google Scholar 

  14. Cai, G., Chen, B.M., Dong, X., Lee, T.H.: Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics 21(5), 803–820 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GIARSI, for the support to develop this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernando A. Chicaiza , Cristian Gallardo , Christian P. Carvajal , Washington X. Quevedo , Vicente Morales or Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chicaiza, F.A. et al. (2018). Real–Time Virtual Reality Visualizer for Unmanned Aerial Vehicles. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics