Skip to main content

Augmented Reality System for the Complement of Cognitive Therapeutic Exercise in Children: Preliminary Tests

  • Conference paper
  • First Online:
Book cover Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10851))

  • 3900 Accesses

Abstract

This paper describes the development of an interactive and motivational tool, to give immersion in the cognitive therapeutic exercise (Perfetti method). This system is implemented with the use of virtual environments developed in the Unity 3D graphic engine. The environments present friendly, novel designs, which are shown to the user in augmented reality with the help of a high-end smartphone and virtual reality headset. In addition, the system helps in the process of recording activities and collecting important data for the monitoring and evolution of the users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bryan Kolb, I.W.: Fundamentals of Human NeuroPsychology. Macmillan Publishers, Basingstoke (2009)

    Google Scholar 

  2. De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)

    Article  Google Scholar 

  3. Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)

    Article  Google Scholar 

  4. Oh, S., Bailenson, J.: Virtual and augmented reality. In: The International Encyclopedia of Media Effects (2017)

    Google Scholar 

  5. Rodrigues, J., Cardoso, P., Monteiro, J., Figueiredo, M.: Handbook of Research on Human-Computer Interfaces, Developments, and Applications. IGI Global, Hershey (2016)

    Book  Google Scholar 

  6. Hwang, G., Wu, P., Chen, C., Tu, N.: Effects of an augmented reality-based educational game on students’ learning achievements and attitudes in real-world observations. In: Interactive Learning Environments, pp. 1895–1906 (2015)

    Article  Google Scholar 

  7. Krichenbauer, M., Yamamoto, G., Taketom, T., Sandor, C., Kato, H.: Augmented reality versus virtual reality for 3D object manipulation. IEEE Trans. Vis. Comput. Graph. 24(2), 1038–1048 (2015)

    Article  Google Scholar 

  8. Kerdvibulvech, C., Wang, C.-C.: A new 3D augmented reality application for educational games to help children in communication interactively. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 465–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7_35

    Chapter  Google Scholar 

  9. Sobota, B., Korečko, Š., Jacho, L., Pastornický, P., Hudák, M., Sivý, M.: Virtual-reality technologies and smart environments in the process of disabled people education. In: Emerging eLearning Technologies and Applications (ICETA) (2017)

    Google Scholar 

  10. Lin, C., Chang, Y.: Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities. In: Research in Developmental Disabilities, pp. 1–8 (2015)

    Article  Google Scholar 

  11. Suzuki, K.: Augmented human technology. In: Sankai, Y., Suzuki, K., Hasegawa, Y. (eds.) Cybernics: Fusion of Human, Machine and Information Systems. LNCS, pp. 111–131. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54159-2_7

    Chapter  Google Scholar 

  12. Serrano, C.V., Bonilla, I., Gomez, F.V., Mendoza, M.: Development of a haptic interface for motor rehabilitation therapy. In: Engineering in Medicine and Biology Society (EMBC), 37th Annual International Conference of the IEEE, pp. 1156–1159 (2005)

    Google Scholar 

  13. Lin, C., Chai, H., Wang, J., Chen, C., Liu, Y., Chen, C., Lin, C.-W., Huang, Y.-M.: Augmented reality in educational activities for children with disabilities. Displays 42, 51–54 (2016)

    Article  Google Scholar 

  14. Robson, N., Faller, K., Ahir, V., Ferreira, A., Buchanan, J.: Creating a virtual perception for upper limb rehabilitation. Int. J. Biomed. Biol. Eng. 11, 152–157 (2017)

    Google Scholar 

  15. Hsiao, K., Rashvand, H.: Data modeling mobile augmented reality: integrated mind and body rehabilitation. Multimed. Tools Appl. 74, 3543–3560 (2013)

    Article  Google Scholar 

  16. Ravi, D., Kumar, N., Singhi, P.: Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy 103, 245–258 (2017)

    Article  Google Scholar 

  17. Kolar, P., et al.: Clinical Rehabilitation. Alena Kobesová, Prague (2014)

    Google Scholar 

  18. De Cecco, M., et al.: Augmented reality to enhance the clinician’s observation during assessment of daily living activities. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 3–21. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_1

    Chapter  Google Scholar 

  19. Hatem, S., Saussez, G., Faille, M., Prist, V., Zhang, X., Dispa, D., Bleyenheuft, Y.: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. (2016)

    Google Scholar 

  20. Manzanares, M., Galán, C., Morales, N., Guerrero, E.: Sensitive reeducation of the hand. In: Fisioterapia, pp. 114–122 (2004)

    Google Scholar 

  21. Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: A game based assistive tool for rehabilitation of dysphonic patients. In: Virtual and Augmented Assistive Technology (VAAT), pp. 9–14 (2015)

    Google Scholar 

Download references

Acknowledgements

We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Pruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pruna, E., Escobar, I., Acurio, A., Cocha, H., Bucheli, J., Mena, L. (2018). Augmented Reality System for the Complement of Cognitive Therapeutic Exercise in Children: Preliminary Tests. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics