Skip to main content

Stem Cell-Based Organoid Models in Lung Development and Diseases

  • Chapter
  • First Online:
Lung Stem Cell Behavior
  • 362 Accesses

Abstract

The recent application of co-culture organoid systems in different organs has successfully helped in the in vitro cultivation of stem cell populations that were previously inaccessible. These co-culture organoid systems have provided a novel method for investigating the cellular and molecular mechanisms controlling the development, interaction, and function of these cell types. In the lung, organoid cultures have been recently used for cell-cell interaction studies. These cultures rely on the interactions between the lung stem cells and a putative niche cell that is important for their behavior, differentiation, and growth. The organoid systems have been used in the study of airway basal cells, but the applications of organoid systems for the study of other lung regions or cell types are still in its infancy. This chapter describes our current knowledge of the stem cell-based organoid models in lung development and diseases. It also describes recent advances in the embryonic lung-derived organoids, the adult lung-derived organoids, and organoids from iPSC-derived lung epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alanis, D. M., Chang, D. R., Akiyama, H., et al. (2014). Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nature Communications, 5, 3923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alder, J. K., Barkauskas, C. E., Limjunyawong, N., et al. (2015). Telomere dysfunction causes alveolar stem cell failure. Proceedings of the National Academy of Sciences of the United States of America, 112, 5099–5104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkauskas, C. E., Cronce, M. J., Rackley, C. R., et al. (2013). Type 2 alveolar cells are stem cells in adult lung. The Journal of Clinical Investigation, 123, 3025–3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkauskas, C. E., Chung, M.-I., Fioret, B., Gao, X., Katsura, H., & Hogan, B. L. (2017). Lung organoids: Current uses and future promise. Development, 144, 986–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, N., Huch, M., Kujala, P., et al. (2010). Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6, 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Broutier, L., Andersson-Rolf, A., Hindley, C. J., et al. (2016). Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 11, 1724–1743.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Z., Lis, R., Ginsberg, M., et al. (2016). Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nature Medicine, 22, 154–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., & Zosky, G. R. (2017). Lung development. Photochemical & Photobiological Sciences, 16, 339–346.

    Article  CAS  Google Scholar 

  • Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165, 1586–1597.

    Article  CAS  PubMed  Google Scholar 

  • Curradi, G., Walters, M. S., Ding, B.-S., et al. (2012). Airway basal cell vascular endothelial growth factor mediated cross-talk regulates endothelial cell-dependent growth support of human airway basal cells. Cellular and Molecular Life Sciences, 69, 2217–2231.

    Article  CAS  PubMed  Google Scholar 

  • del Moral, P.-M., & Warburton, D. (2010). Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation. Methods in Molecular Biology, 633, 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Desai, T. J., Brownfield, D. G., & Krasnow, M. A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 1–16.

    Google Scholar 

  • Ding, B.-S., Nolan, D. J., Guo, P., et al. (2011). Endothelial-derived inductive angiocrine signals initiate and sustain regenerative lung alveolarization. Cell, 147(3), 539–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dye, B. R., Hill, D. R., Ferguson, M. A. H., et al. (2015). In vitro generation of human pluripotent stem cell derived lung organoids. Elife, 4, e05098.

    Article  PubMed Central  Google Scholar 

  • Dye, B. R., Dedhia, P. H., Miller, A. J., et al. (2016). A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife, 5, e19732.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Hashash, A. H. (2013). Lung stem cells: Mechanisms of behavior, development and regeneration. Anatomy and Physiology, 3, 119–128.

    Article  Google Scholar 

  • Firth, A. L., Dargitz, C. T., Qualls, S. J., et al. (2014). Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111(17), E1723–E1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, E., Shojaie, S., Wang, J., et al. (2015). Three-dimensional culture and FGF signaling drive differentiation of murine pluripotent cells to distal lung epithelial cells. Stem Cells and Development, 24, 21–35.

    Article  CAS  PubMed  Google Scholar 

  • Fulcher, M. L., & Randell, S. H. (2013). Human nasal and tracheobronchial respiratory epithelial cell culture. Methods in Molecular Biology, 945, 109–121.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Bali, A. S., Randell, S. H., & Hogan, B. L. M. (2015). GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. The Journal of Cell Biology, 211, 669–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaedi, M., Calle, E. A., Mendez, J. J., et al. (2013). Human iPS cell derived alveolar epithelium repopulates lung extracellular matrix. The Journal of Clinical Investigation, 123, 4950–4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh, S., Ito, I., Nagasaki, T., et al. (2014). Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports, 3, 394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., et al. (2013). Artificial three-dimensional niches deconstruct pancreas development in vitro. Development, 140, 4452–4462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., & Grapin-Botton, A. (2014). In vitro pancreas organogenesis from dispersed mouse embryonic progenitors. Journal of Visualized Experiments, 89, e51725.

    Google Scholar 

  • Greggio, C., De Franceschi, F., & Grapin-Botton, A. (2015). Concise reviews: In vitro-produced pancreas organogenesis models in three dimensions: Self-organization from few stem cells or progenitors. Stem Cells, 33, 8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurdon, J. B. (1988). A community effect in animal development. Nature, 336, 772–774.

    Article  CAS  PubMed  Google Scholar 

  • Hegab, A. E., Arai, D., Gao, J., et al. (2015). Mimicking the niche of lung epithelial stem cells and characterization of several effectors of their in vitro behavior. Stem Cell Research, 15, 109–121.

    Article  CAS  PubMed  Google Scholar 

  • Herriges, M., & Morrisey, E. E. (2014). Lung development: Orchestrating the generation and regeneration of a complex organ. Development, 141, 502–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, A. R., Donaldson, J. E., Blume, C., et al. (2016). IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit. Tissue Barriers, 4, e1206378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan, B. L. M., Barkauskas, C. E., Chapman, H. A., et al. (2014). Repair and regeneration of the respiratory system: Complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell, 15, 123–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S. X. L., Islam, M. N., O’Neill, J., et al. (2014). Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature Biotechnology, 32(1), 84–91.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S. X. L., Green, M. D., de Carvalho, A. T., et al. (2015). The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nature Protocols, 10, 413–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huch, M., Bonfanti, P., Boj, S. F., et al. (2013a). Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/Rspondin axis. The EMBO Journal, 32, 2708–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huch, M., Dorrell, C., Boj, S. F., et al. (2013b). In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 494, 247–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huch, M., Gehart, H., van Boxtel, R., et al. (2015). Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 160, 299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynds, R. E., Butler, C. R., Janes, S. M., & Giangreco, A. (2016). Expansion of human airway basal stem cells and their differentiation as 3D tracheospheres. Methods in Molecular Biology, 1, 11.

    Google Scholar 

  • Ibrahim, A., & El-Hashash, A. H. (2015). Lung stem cell behavior in development and regeneration. Edorium Journal of Stem Cell Research and Therapy, 1, 1–13.

    Google Scholar 

  • Jaskoll, T. F., Don-Wheeler, G., Johnson, R., & Slavkin, H. C. (1988). Embryonic mouse lung morphogenesis and type II cytodifferentiation in serumless, chemically defined medium using prolonged in vitro cultures. Cell Differentiation, 24, 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Karthaus, W. R., Iaquinta, P. J., Drost, J., et al. (2014). Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 159, 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi, S., Gotoh, S., Tateishi, K., et al. (2016). Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Reports, 6, 18–25.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P. A., Hu, Y., Yamamoto, Y., et al. (2011). Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell, 147, 525–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.-H., Bhang, D. H., Beede, A., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 156, 440–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longmire, T. A., Ikonomou, L., Hawkins, F., et al. (2012). Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell, 10, 398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCracken, K. W., Catá, E. M., Crawford, C. M., et al. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516, 400–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondrinos, M. J., Koutzaki, S., Lelkes, P. I., & Finck, C. M. (2007). A tissue engineered model of fetal distal lung tissue. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L639–L650.

    Article  CAS  PubMed  Google Scholar 

  • Mondrinos, M. J., Jones, P. L., Finck, C. M., & Lelkes, P. I. (2014). Engineering de novo assembly of fetal pulmonary organoids. Tissue Engineering. Part A, 20, 2892–2907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrisey, E. E., & Hogan, B. L. M. (2010). Preparing for the first breath: Genetic and cellular mechanisms in lung development. Developmental Cell, 18, 8–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou, H., Zhao, R., Sherwood, R., et al. (2012). Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell, 10, 385–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou, H., Vinarsky, V., Tata, P. R., et al. (2016). Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell, 19, 217–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadkarni, R. R., Abed, S., & Draper, J. S. (2016). Organoids as a model system for studying human lung development and disease. Biochemical and Biophysical Research Communications, 473, 675–682.

    Article  CAS  PubMed  Google Scholar 

  • Nikolić, M. Z., & Rawlins, E. L. (2017). Lung organoids and their use to study cell-cell interaction. Current Pathobiology Reports, 5, 223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passier, R., Orlova, V., & Mummery, C. (2016). Complex tissue and disease modeling using hiPSCs. Cell Stem Cell, 18, 309–321.

    Article  CAS  PubMed  Google Scholar 

  • Quantius, J., Schmoldt, C., Vazquez-Armendariz, A. I., et al. (2016). Influenza virus infects epithelial stem/progenitor cells of the distal lung: Impact on Fgfr2b-driven epithelial repair. PLoS Pathogens, 12, e1005544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafii, S., Cao, Z., Lis, R., et al. (2015). Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 17, 123–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin, S. A., & Zorn, A. M. (2014). Gene regulatory networks governing lung specification. Journal of Cellular Biochemistry, 115(8), 1343–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlins, E. L., Clark, C. P., Xue, Y., et al. (2009a). The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development, 136, 3741–3745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlins, E. L., Okubo, T., Xue, Y., et al. (2009b). The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell, 4, 525–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, S., Chiba, N., Yao, C., et al. (2016). Rare SOX2(+) airway progenitor cells generate KRT5(+) cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem Cell Reports, 7, 817–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock, J. R., Onaitis, M. W., Rawlins, E. L., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106, 12771–12775.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rock, J. R., Gao, X., Xue, Y., et al. (2011). Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell, 8, 639–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, T., Vries, R. G., Snippert, H. J., et al. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459, 262–265.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., van Es, J. H., Snippert, H. J., et al. (2011a). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469, 415–418.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Stange, D. E., Ferrante, M., et al. (2011b). Long-term expansion of epithelial organoids from human Colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 141, 1762–1772.

    Article  CAS  PubMed  Google Scholar 

  • Schittny, J. C. (2017). Development of the lung. Cell and Tissue Research, 367(3), 427–444.

    Article  PubMed  PubMed Central  Google Scholar 

  • Serls, A. E., Doherty, S., Parvatiyar, P., et al. (2005). Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development, 132, 35–47.

    Article  CAS  PubMed  Google Scholar 

  • Seth, R., Shum, L., Wu, F., et al. (1993). Role of epidermal growth factor expression in early mouse embryo lung branching morphogenesis in culture: Antisense oligodeoxynucleotide inhibitory strategy. Developmental Biology, 158, 555–559.

    Article  CAS  PubMed  Google Scholar 

  • Sucre, J. M. S., Wilkinson, D., Vijayaraj, P., et al. (2016). A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310, L889–L898.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadokoro, T., Wang, Y., Barak, L. S., et al. (2014). IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111, E3641–E3649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadokoro, T., Gao, X., Hong, C. C., et al. (2016). BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development, 143, 764–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  Google Scholar 

  • Takasato, M., Er, P. X., Chiu, H. S., et al. (2016). Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 536, 238–238.

    Article  CAS  PubMed  Google Scholar 

  • Tata, P. R., Mou, H., Pardo-Saganta, A., et al. (2013). Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature, 503, 218–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teisanu, R. M., Chen, H., Matsumoto, K., et al. (2011). Functional analysis of two distinct bronchiolar progenitors during lung injury and repair. American Journal of Respiratory Cell and Molecular Biology, 44, 794–803.

    Article  CAS  PubMed  Google Scholar 

  • Treutlein, B., Brownfield, D. G., Wu, A. R., et al. (2014). Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature, 509, 371–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan, A. E., Brumwell, A. N., Xi, Y., et al. (2015). Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 517, 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Warburton, D., El-Hashash, A., Carraro, G., et al. (2010). Lung organogenesis. Current Topics in Developmental Biology, 90, 73–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, C. L., Mahe, M. M., Múnera, J., et al. (2014). An in vivo model of human small intestine using pluripotent stem cells. Nature Medicine, 20, 1310–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, D. C., Alva-Ornelas, J. A., Sucre, J. M. S., et al. (2016). Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Translational Medicine, 6(2), 622–633.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, A. P., Bear, C. E., Chin, S., et al. (2012). Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 30, 876–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, A. P., Chin, S., Xia, S., et al. (2015). Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nature Protocols, 10, 363–381.

    Article  CAS  PubMed  Google Scholar 

  • Yin, X., Farin, H. F., van Es, J. H., et al. (2014). Niche-independent high purity cultures of Lgr5+ intestinal stem cells and their progeny. Nature Methods, 11, 106–112.

    Article  CAS  PubMed  Google Scholar 

  • You, Y., Richer, E. J., Huang, T., & Brody, S. L. (2002). Growth and differentiation of mouse tracheal epithelial cells: Selection of a proliferative population. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283, L1315–L1321.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Zhou, X., Chen, T., et al. (2014). Single primary fetal lung cells generate alveolar structures in vitro. In Vitro Cellular & Developmental Biology. Animal, 50, 87–93.

    Article  Google Scholar 

  • Zuo, W., Zhang, T., Wu, D. Z., et al. (2014). p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature, 517, 616–620.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Hashash, A. (2018). Stem Cell-Based Organoid Models in Lung Development and Diseases. In: Lung Stem Cell Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-95279-6_8

Download citation

Publish with us

Policies and ethics