Skip to main content

Climate Change Impacts on the Genetics of Post-Fire Regeneration and Reproductive Phenology

  • Chapter
  • First Online:
Forests of Southeast Europe Under a Changing Climate

Part of the book series: Advances in Global Change Research ((AGLO,volume 65))

Abstract

Evidence regarding fast climatic change is constantly accumulating and has been linked to an ongoing increase of fire occurrence and reproductive phenology modifications, both being crucial factors in the evolution of forest tree populations. Studying the effects of forest fires in the gene pool, it was found that in basic genetic diversity parameters that reflect the magnitude of genetic variation in natural populations, no significant differences between post-fire and control populations were observed. Nevertheless, the genetic architecture of post-fire populations compared to control populations presented some differences in the frequencies of rare alleles, the occurrence of interspecific hybridization in the post-fire populations and the observation of genetic bottleneck effects, especially in isolated populations. Forest fires may not induce genetic erosion in forest tree populations per se however population isolation compounded by periods of high forest fire frequency and intensity, may lead to adverse consequences for the architecture of the genetic diversity of forest trees. Such consequences may be compounded by reduced natural regeneration due to the decreased percentage of sound seed, a result of the anticipated reduction of tree fertility and flowering synchronization, induced by climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alizoti, P. G., Kilimis, K., & Gallios, P. (2010). Temporal and spatial variation of flowering among Pinus nigra Arn. clones under changing climatic conditions. Forest Ecology and Management, 259, 786–797.

    Article  Google Scholar 

  • Aravanopoulos, F. A. (2009). Wild fires as a factor for the erosion of the forest gene pool: Towards a genetic holocaust? In Proceeding of 14th Pan-Hellenic forest science conference, Patras (pp. 851–863).

    Google Scholar 

  • Aravanopoulos, F. A., & Panetsos, K. P. (1998). Genetics and evolution of natural Pinus brutia Ten. populations in Lesvos island. Geotechnical Science Issues, 9, 10–19.

    Google Scholar 

  • Aravanopoulos, F. A., Panetsos, K. P., & Scaltsoyiannes, Α. (2004). Genetic structure of Pinus brutia stands exposed to wild fires. Plant Ecology, 171, 175–183.

    Article  Google Scholar 

  • Baka, M., & Aravanopoulos, F. A. (2000). Molecular genetics of Pinus halepensis populations. In Proceeding of 8th Pan-Hellenic conference, Hellenic scientific society for plant genetics and breeding, Arta (pp. 419–426).

    Google Scholar 

  • Baka, M., & Aravanopoulos, F. A. (2002). Analysis of molecular genetic parameters in natural Pinus halepensis (Mill.) populations. In Proceeding of 9th Pan-Hellenic conference, Hellenic scientific society for plant genetics and breeding, Thermi (pp. 427–434).

    Google Scholar 

  • Baka, M., & Aravanopoulos, F. A. (2006). Molecular genetic analysis of Aleppo pine populations originating from areas of differential forest fire history: Implications for reforestations and breeding. In Proceeding of international conference of population genetics and genomics of forest trees, Madrid (p. 112).

    Google Scholar 

  • Bariteau, M., Alptekin, U., Aravanopoulos, F. A., et al. (2003). Les resources génétiques forestières dans le basin Méditerranéen. Fôret Méditerranéenne, 24, 148–158.

    Google Scholar 

  • Bernier, G., & Périlleux, C. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal, 3, 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Climent, J., Prada, M. A., Calama, R., Chambel, M. R., Sánchez de Ron, D., & Alia, R. (2008). To grow or to seed: Ecotypic variation in reproductive allocation and cone production by young female Aleppo Pine (Pinus halepensis, Pinaceae). American Journal of Botany, 95(7), 833–842.

    Article  PubMed  Google Scholar 

  • Dimitrakopoulos, Α. (2004). Classification of Prefectures in Greece based on forest fire frequency and total burnt area during the period 1983–1997. Science Annual Facility Forestry & Natural Environment. Aristotle University of Thessaloniki, 40, 215–226.

    Google Scholar 

  • Dobzhansky, T. (1970). Genetics of the evolutionary process. New York: Columbia University Press.

    Google Scholar 

  • EEA. (2007). Europe’s environment. 4th Assessment. Copenhagen: EEA.

    Google Scholar 

  • England, P. R., Usher, A. V., Whelan, R. J., & Ayre, D. J. (2002). Microsatellite diversity and genetic structure of fragmented populations of the rare, fire-dependent shrub Grevillea macleayana. Molecular Ecology, 11, 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Gollan, T., Schurr, U., & Schulze, E. D. (1992). Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino-acids, in and pH of, the xylem sap. Plant, Cell & Environment, 15, 551–559.

    Article  CAS  Google Scholar 

  • Gomez, Α., Aravanopoulos, F. A., Alia, R., & Bueno, M. A. (1999). Pinus halepensis RAPD markers: Linkage and genetic diversity. In Proceeding of international congress ‘Applications of Biotechnology in Forest Trees’, Vitoria, Spain, September 22–25, 1999. 4 p.

    Google Scholar 

  • IPCC – Intergovernmental Panel on Climate Change. (2013). In T. F. Stocker, D. Qin, G. K. Plattner, et al. (Eds.), Climate change: The physical science basis, Fifth Assessment Report. Geneva: IPCC.

    Google Scholar 

  • Krauss, S. L. (1997). Low genetic diversity in Persoonia mollis (Proteaceae), a fire-sensitive shrub occurring in a fire-prone habitat. Heredity, 78, 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Ledig, F. T. (1992). Human impacts on genetic diversity in forest ecosystems. Oikos, 63, 87–108.

    Article  Google Scholar 

  • Meagher, T. R. (1988). Sex determination in plants. In D. J. Lovett & D. L. Lovett (Eds.), Plant reproductive ecology: Pattern and strategies (pp. 125–138). New York: Oxford University Press.

    Google Scholar 

  • NOAA – National Oceanic and Atmospheric Administration. (2018). NOAA National Centers for Environmental Information, State of the Climate: Global climate report for annual 2017. http://www.noaa.gov/climate

  • Paliouris, G., Taylor, H. W., Wein, R. W., et al. (1995). Fire as an agent in redistributing fallout 137Cs in the Canadian boreal forest. Science Total Enviroment, 160/161, 153–166.

    Article  Google Scholar 

  • Panetsos, K. P., Aravanopoulos, F. A., & Scaltsoyiannes, Α. (1998). Genetic variation of Pinus brutia in islands of the north eastern Aegean Sea. Silvae Genetica, 47, 115–120.

    Google Scholar 

  • Pereira, J. S., Chaves, M. M., Caldeira, M. C., & Correia, A. (2007). Water availability and productivity. In J. Morison & M. Morecroft (Eds.), Plant growth and climate change (pp. 119–145). London: Blackwell Publication.

    Google Scholar 

  • Perry, D. J., & Bousquet, J. (2001). Genetic diversity and mating system of post-fire and post-harvest black spruce: An investigation using codominant sequence-tagged-site (STS) markers. Canadian Journal of Forest Research, 31, 32–40.

    Article  Google Scholar 

  • Queitsch, C., Hong, S. W., Vierling, E., & Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 12, 479–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajora, O. P., & Pluhar, S. A. (2003). Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theoretical and Applied Genetics, 106, 1203–1212.

    Article  CAS  PubMed  Google Scholar 

  • Rajora, O. P., & Rahman, M. H. (2002). EST and microsatellite DNA analysis of genetic effects of forest management practices and forest fires in black spruce (Picea mariana). In X proc. plant and animal genome conference San Diego, CA, January 12–16 (p. 209).

    Google Scholar 

  • Rajora, O. P., Mann, I. K., & Shi, Y. Z. (2005). Genetic diversity and population structure of boreal white spruce (Picea glauca) in pristine conifer-dominated and mixed wood forest stands. Canadian Journal of Botany, 83, 1096–1105.

    Article  CAS  Google Scholar 

  • Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signalling. Cellular Signaling, 24, 981–990.

    Article  CAS  Google Scholar 

  • Reznick, D., Nunney, L., & Tessier, A. (2000). Big houses, big cars, superfleas and the cost of reproduction. Trends in Ecology & Evolution, 15, 421–425.

    Article  CAS  Google Scholar 

  • Rogers, D. L. (2000). Genotypic diversity and clone size in old-growth populations of coast redwood (Sequoia sempervirens). Canadian Journal of Botany, 78, 1408–1419.

    Article  CAS  Google Scholar 

  • Romme, W. H., Turner, M. G., Gardner, R. H., et al. (1997). A rare episode of sexual reproduction in aspen (Populus tremuloides Michx.) following the 1988 Yellowstone fires. Natural Areas Journal, 17, 17–25.

    Google Scholar 

  • Sherry, R. A., Zhou, X., Gu, S., Arnone, J. A., III, Johnson, D. W., Schimel, D. S., Verburg, P. S. J., Wallace, L. L., & Luo, Y. (2011). Changes in duration of reproductive phases and lagged phenological response to experimental warming. Plant Ecology and Diversity, 4(1), 23–35.

    Article  Google Scholar 

  • Uchiyama, K., Goto, S., Tsuda, Y., et al. (2006). Genetic diversity and genetic structure of adult and buried seed populations of Betula maximowicziana in mixed and post-fire stands. Forest Ecology and Management, 237, 119–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos A. Aravanopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aravanopoulos, F.A., Alizoti, P.G. (2019). Climate Change Impacts on the Genetics of Post-Fire Regeneration and Reproductive Phenology. In: Šijačić-Nikolić, M., Milovanović, J., Nonić, M. (eds) Forests of Southeast Europe Under a Changing Climate. Advances in Global Change Research, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-95267-3_36

Download citation

Publish with us

Policies and ethics