Skip to main content

Parameters of the Arc

  • Chapter
  • First Online:
Powerful Pulsed Plasma Generators

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 101))

  • 517 Accesses

Abstract

The main characteristics of the pulsed arc, operating gas, and discharge process, which are available for immediate registration during the full-scale experiment on the powerful pulsed plasma generators , are:

  • Discharge current

  • Voltage drop across the arc

  • Initial and pulsed gas pressure in the discharge chamber of the generator

  • Erosion of the electrodes

  • Discharge duration.

On the basis of these data, the following parameters are calculated:

  • Peak and average power of the discharge

  • Arc resistance

  • Energy inputted into the arc

  • Electric charge

  • Internal energy of the gas

  • Average gas temperature.

These parameters are used to determine such characteristics of the generator:

  • Coefficient of the power supply energy conversion into the arc

  • Coefficient of the arc electrical energy conversion into the internal energy of the gas

  • Specific erosion of the electrodes

  • Apparent molecular weight of the gas

  • Speed of sound in the gas, etc.

The nature and the parameters of the arc for the particular type of the discharge chamber are determined by many factors which are from the power supply parameters to the chemical composition of the electrode material. During researches, some factors that mainly determine the nature of the arcing and arc’s parameters were identified. These factors are next:

  • Capacitance and inductance of the power supply

  • Inductance and resistance of the discharge circuit

  • Charging voltage

  • Gas and its initial pressure

  • Interelectrode gap

  • Material and shape of the electrodes

  • Configuration and volume of the discharge chamber.

At this, we must remember of the significant impact of nonlinear arc parameters (resistance and inductance) on the amplitude-frequency characteristics of the discharge current. Thus, there is a multifactorial interaction of the initial conditions of the experiment and the load, and their joint impact on the characteristics of the discharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.A. Kolikov, Doctoral thesis, St.-Petersburg, 2005 (in Russian)

    Google Scholar 

  2. I.A. Glebov, F.G. Rutberg, High-Power Plasma Generators (Moscow, 1985) (in Russian)

    Google Scholar 

  3. G.A. Ljubimov, Experimental Researches of Plasma Generators (Novosibirsk, 1977) (in Russian)

    Google Scholar 

  4. Y.B. Zel’dovich and Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York, 1966)

    Google Scholar 

  5. S. Krist, P.M. Sherman, G.R. Glass, Sov. J. Aerosp. Sci. 1, 87 (1966) (in Russian)

    Google Scholar 

  6. A.A. Bogomaz, Doctoral thesis, St.-Petersburg, 2012 (in Russian)

    Google Scholar 

  7. V.A. Nemchinskiy, Sov. J. Tech. Phys. 52, 35 (1982) (in Russian)

    Google Scholar 

  8. V.A. Nemchinskiy, Sov. J. Tech. Phys. 52, 235 (1983) (in Russian)

    Google Scholar 

  9. P.G. Rutberg, A.V. Budin, V.A. Kolikov, B.P. Levchenko, V.V. Leontiev, I.P. Makarevich, N.A. Shirokov, High Temp. 32, 589 (1994)

    Google Scholar 

  10. O.B. Bron, L.K. Sushkov, Plasma Flows in an Electric Arch of Switching Off Devices (Leningrad, 1975) (in Russian)

    Google Scholar 

  11. B.V. Zamyshlyaev, E.L. Stupitskiy, A.G. Guz’, V.G. Zhukov, Composition and Thermodynamic Functions of Plasma, Handbook (Moscow, 1984) (in Russian)

    Google Scholar 

  12. P.G. Rutberg, A.A. Bogomaz, A.V. Budin, V.A. Kolikov, M.E. Pinchuk, A.A. Pozubenkov, Tech. Phys. 47, 26 (2002)

    Article  Google Scholar 

  13. P.G. Rutberg, A.A. Bogomaz, A.V. Budin, V.A. Kolikov, A.G. Kuprin, Izvestia RAS. Energy 1, 100 (1998) (in Russian)

    Google Scholar 

  14. A.A. Bogomaz, in Materials of Seminars—Schools of Young Scientists, Students and Post-Graduate Students (Petrozavodsk, 2004) (in Russian)

    Google Scholar 

  15. I.M. Podgornuiy, Lectures on Plasma Diagnostics (Moskow, 1968) (in Russian)

    Google Scholar 

  16. A.A. Bogomaz, A.V. Budin, S.V. Zakharenkov, V.A. Kolikov, A.I. Kulishevich, I.P. Makarevich, A.F. Savvateev, P.G. Rutberg, Izvestia RAS. Energy 1, 64 (1998) (in Russian)

    Google Scholar 

  17. P.G. Rutberg, A.A. Bogomaz, A.V. Budin, V.A. Kolikov, A.G. Kuprin, Izvestia RAS. Energy 1, 100 (1998) (in Russian)

    Google Scholar 

  18. G.A. Mesjats, Ectons in the Vacuum Discharge: Breakdown, a Spark, an Arch (Moskow, 2000) (in Russian)

    Google Scholar 

  19. G.A. Ljubimov, V.I. Rahovskiy, Sov. J. Adv. Phys. Sci. 125, 665 (1978) (in Russian)

    Google Scholar 

  20. B. Juttner, IEEE Trans. Plasma Sci. PS-15, 474 (1987)

    Article  ADS  Google Scholar 

  21. V.I. Rahovskiy, Physical Bases of Switching of an Electric Current in Vacuum (Moskow, 1970) (in Russian)

    Google Scholar 

  22. P.L. Kalantarov, L.A. Tseitlin, Calculation of Inductances (Leningrad, 1986) (in Russian)

    Google Scholar 

  23. B.E. Fridman, P.G. Rutberg, in Conference Physics of Low-Temperature Plasmas (Petrozavodsk, 1995) (in Russian)

    Google Scholar 

  24. G.S. Belkin, V.J. Kiselev, Sov. J. Tech. Phys. 36, 384 (1966) (in Russian)

    Google Scholar 

  25. D.J. Sherklif, Course of Magnetic Hydrodynamics (Moskow, 1967) (in Russian)

    Google Scholar 

  26. J.P. Knjazev, E.S. Borovik, R.V. Mitin, V.I. Petrenko, Sov. J. Tech. Phys. 37, 523 (1967) (in Russian)

    Google Scholar 

  27. V.I. Petrenko, R.V. Mitin, J.P. Knjazev, A.V. Zvjagintsev, Sov. J. Tech. Phys. 379, 1827 (1969) (in Russian)

    Google Scholar 

  28. M.E. Pinchuk, PhD thesis, St. Petersburg, 2004 (in Russian)

    Google Scholar 

  29. N.B. Vargaftik, Directory on Thermophysical Properties of Gases and Liquids (Moskow, 1972) (in Russian)

    Google Scholar 

  30. Y.P. Raizer, Physics of Gas Discharge (Moskow, 1987) (in Russian)

    Google Scholar 

  31. V.E. Fortov, I.T. Jakubov, Nonideal Plasma, (Moskow, 1994) (in Russian)

    Google Scholar 

  32. W.B. Leung, N.M. March, Plasma Phys. 19, 277 (1977)

    Article  ADS  Google Scholar 

  33. H. Lee, J. Phys. D Appl. Phys. 18, 425 (1985)

    Article  ADS  Google Scholar 

  34. A.M. Voronov, PhD thesis, St. Petersburg, 1992 (in Russian)

    Google Scholar 

  35. S.E. Frish, Optical Spectra of Atoms (Moskow, 1963) (in Russian)

    Google Scholar 

  36. V.P. Kopushev, V.V. Hrustalev, Sov. J. Appl. Mech. Tech. Phys. 1, 122 (1980) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kolikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolikov, V., Bogomaz, A., Budin, A. (2018). Parameters of the Arc. In: Powerful Pulsed Plasma Generators. Springer Series on Atomic, Optical, and Plasma Physics, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-319-95249-9_4

Download citation

Publish with us

Policies and ethics