Targeted Therapies for Pediatric Central Nervous System Tumors

  • Nicholas Shawn WhippleEmail author
  • Amar Gajjar


Recent discoveries have significantly enhanced our understanding of the biology of pediatric central nervous system tumors. Molecularly defined targeted therapies are now being used to treat subgroups of these tumors, mostly in the setting of clinical trials. These therapies include targeted inhibition of smoothened to treat sonic hedgehog medulloblastoma; of mammalian target of rapamycin to treat subependymal giant cell astrocytoma; and of the mitogen-activated protein kinase pathway to treat BRAF V600E-mutated low-grade and high-grade gliomas, KIAA1549:BRAF fusion-positive pilocytic astrocytoma, and plexiform neurofibroma. For many patients, the use of these targeted therapies has resulted in significant regression and/or improved control of their tumors, including tumors that are recurrent or refractory to conventional therapy.


BRAF inhibitor (dabrafenib, vemurafenib) High-grade glioma Low-grade glioma MEK inhibitor (selumetinib, trametinib) mTOR inhibitor (everolimus) Plexiform neurofibroma Smoothened inhibitor (sonidegib, vismodegib) Sonic hedgehog medulloblastoma Subependymal giant cell astrocytoma 



Central nervous system


High-grade glioma


Low-grade glioma


Mitogen-activated protein kinase


Mitogen-activated extracellular signal-regulated kinase


Mammalian target of rapamycin


Neurofibromatosis type 1


Plexiform neurofibroma


Patched 1


Subependymal giant cell astrocytoma


Sonic hedgehog




Suppressor of fused


Tuberous sclerosis complex


World Health Organization


  1. 1.
    Ward E, et al. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.CrossRefPubMedGoogle Scholar
  2. 2.
    Curtin SC, Minino AM, Anderson RN. Declines in cancer death rates among children and adolescents in the United States, 1999–2014. NCHS Data Brief. 2016;257:1–8.Google Scholar
  3. 3.
    Louis DN, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefGoogle Scholar
  4. 4.
    Cavalli FMG, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31(6):737–54. e6Google Scholar
  5. 5.
    Robinson GW, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol. 2015;33(24):2646–54.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rudin CM, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361(12):1173–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rodon J, et al. A phase I, multicenter, open-label, first-in-human, dose-escalation study of the oral smoothened inhibitor Sonidegib (LDE225) in patients with advanced solid tumors. Clin Cancer Res. 2014;20(7):1900–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Berard CL. Study of vismodegib in combination with temozolomide versus temozolomide alone in patients with medulloblastomas with an activation of the sonic hedgehog pathway. In: [Internet]. Bethesda: National Library of Medicine (US). 2000 [cited 2017 Jan 1]. Available from: NCT01601184.
  9. 9.
    St. Jude Children’s Research Hospital. A clinical and molecular risk-directed therapy for newly diagnosed medulloblastoma. In: [Internet]. Bethesda: National Library of Medicine (US). 2000 [cited 2017 Jan 1]. Available from:
  10. 10.
    Erivedge [package insert]. San Francisco: Genentech; 2012.Google Scholar
  11. 11.
    Lucas JT Jr, Wright KD. Vismodegib and physeal closure in a pediatric patient. Pediatr Blood Cancer. 2016;63(11):2058.CrossRefGoogle Scholar
  12. 12.
    Krueger DA, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363(19):1801–11.CrossRefPubMedGoogle Scholar
  13. 13.
    Franz DN, et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol. 2015;78(6):929–38.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gajjar A, et al. Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol. 2015;33(27):2986–98.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gajjar A, et al. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res. 2014;20(22):5630–40.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schindler G, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):397–405.CrossRefPubMedGoogle Scholar
  17. 17.
    Miller C, et al. Report of effective trametinib therapy in 2 children with progressive hypothalamic optic pathway pilocytic astrocytoma: documentation of volumetric response. J Neurosurg Pediatr. 2017;19(3):319–24.Google Scholar
  18. 18.
    Olow A, et al. BRAF status in personalizing treatment approaches for pediatric gliomas. Clin Cancer Res. 2016;22(21):5312–21.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Aguilera D, et al. Successful retreatment of a child with a refractory brainstem ganglioglioma with vemurafenib. Pediatr Blood Cancer. 2016;63(3):541–3.CrossRefPubMedGoogle Scholar
  20. 20.
    Lassaletta A, et al. Profound clinical and radiological response to BRAF inhibition in a 2-month-old diencephalic child with hypothalamic/chiasmatic glioma. Pediatr Blood Cancer. 2016;63(11):2038–41.CrossRefPubMedGoogle Scholar
  21. 21.
    Shih KC, et al. Successful treatment with dabrafenib (GSK2118436) in a patient with ganglioglioma. J Clin Oncol. 2014;32(29):e98–e100.CrossRefPubMedGoogle Scholar
  22. 22.
    Su F, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366(3):207–15.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bautista F, et al. Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatr Blood Cancer. 2014;61(6):1101–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee EQ, et al. Successful treatment of a progressive BRAF V600E-mutated anaplastic pleomorphic xanthoastrocytoma with vemurafenib monotherapy. J Clin Oncol. 2016;34(10):e87–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Robinson GW, Orr BA, Gajjar A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer. 2014;14:258.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dombi E, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med. 2016;375(26):2550–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Farid M, et al. Malignant peripheral nerve sheath tumors. Oncologist. 2014;19(2):193–201.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Hematology/Oncology, Department of PediatricsUniversity of Utah and Primary Children’s HospitalSalt Lake CityUSA
  2. 2.Department of OncologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations