Skip to main content

Predictive Biomarkers and Targeted Therapies for Lymphoid Malignancies

  • Chapter
  • First Online:
Predictive Biomarkers in Oncology

Abstract

Neoplasms derived from lymphoid cells include precursor lymphoid neoplasms, mature B-cell neoplasms, plasma cell myeloma, mature T- and NK-cell neoplasms, and Hodgkin lymphoma. The morphology and immunophenotype of B-cell neoplasms correlate with various stages of normal B-cell differentiation and are currently used as a basis for their classification and nomenclature. Alterations in the major physiologic pathways in B cells such as the B-cell receptor signaling pathway, T-cell receptor pathway, NF-kB pathway, MAPK pathway, PI3K/AKT1, MTOR pathway, NOTCH signaling pathway, inhibition of apoptosis, impairment of differentiation to plasma cells, and epigenetic alterations play a major role in neoplastic transformation. Advances in understanding of the molecular pathogenesis of lymphomas in recent years, especially using next-generation sequencing, have enabled identification of novel diagnostic, prognostic, and predictive molecular biomarkers. Novel-targeted therapies based on these biomarkers have revolutionized the therapeutic landscape for relapsed and refractory lymphomas.

Chapter includes adapted text extracts from: Pillai RK, Chan WC. Pathogenesis of lymphomas. In: Zain J, Kwak L. (eds) Management of Lymphomas: A Case-Based Approach. Adis, Cham; 2017: 11–31. With permission from Springer Nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, et al. WHO classification of tumors of hematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2017.

    Google Scholar 

  2. Onaindia A, Medeiros LJ, Patel KP. Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol Off J U S Can Acad Pathol Inc. 2017;30(10):1338–66. PubMed PMID: 28664939.

    CAS  Google Scholar 

  3. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88–92. PubMed PMID: 20054396. Pubmed Central PMCID: 2845535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319(5870):1676–9. PubMed PMID: 18323416.

    Article  CAS  PubMed  Google Scholar 

  5. Love C, Sun Z, Jima D, Li G, Zhang J, Miles R, et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44(12):1321–5. PubMed PMID: 23143597. Pubmed Central PMCID: 3674561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–9. PubMed PMID: 21179087.

    Article  CAS  PubMed  Google Scholar 

  7. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43(9):830–7. PubMed PMID: 21804550. Pubmed Central PMCID: 3297422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209(9):1537–51. PubMed PMID: 22891273. Pubmed Central PMCID: 3428941. Epub 2012/08/15. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.

    Article  CAS  PubMed  Google Scholar 

  10. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459(7247):717–21. PubMed PMID: 19412164. Pubmed Central PMCID: 2973325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arcaini L, Rossi D. Nuclear factor-kappaB dysregulation in splenic marginal zone lymphoma: new therapeutic opportunities. Haematologica. 2012;97(5):638–40. PubMed PMID: 22556352. Pubmed Central PMCID: 3342963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S, et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012;119(12):2854–62.

    Article  CAS  PubMed  Google Scholar 

  13. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A. 2012;109(10):3879–84. PubMed PMID: 22343534. Pubmed Central PMCID: 3309757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23. PubMed PMID: 20519626. Pubmed Central PMCID: 3173987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116–20. PubMed PMID: 22885699. Pubmed Central PMCID: 3609867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abubaker J, Bavi PP, Al-Harbi S, Siraj AK, Al-Dayel F, Uddin S, et al. PIK3CA mutations are mutually exclusive with PTEN loss in diffuse large B-cell lymphoma. Leukemia. 2007;21(11):2368–70. PubMed PMID: 17657213.

    Article  CAS  PubMed  Google Scholar 

  17. Rudelius M, Pittaluga S, Nishizuka S, Pham TH, Fend F, Jaffe ES, et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood. 2006;108(5):1668–76. PubMed PMID: 16645163. Pubmed Central PMCID: 1895501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Miranda NF, Peng R, Georgiou K, Wu C, Falk Sorqvist E, Berglund M, et al. DNA repair genes are selectively mutated in diffuse large B cell lymphomas. J Exp Med. 2013;210(9):1729–42. PubMed PMID: 23960188. Pubmed Central PMCID: 3754869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M, Shen Q, et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell. 2010;18(6):568–79. PubMed PMID: 21156281. Pubmed Central PMCID: 3030476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chi P, Allis CD, Wang GG. Covalent histone modifications – miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10(7):457–69. PubMed PMID: 20574448. Pubmed Central PMCID: 3262678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang Y, Melnick A. The epigenetic basis of diffuse large B-cell lymphoma. Semin Hematol. 2015;52(2):86–96. PubMed PMID: 25805588. Pubmed Central PMCID: 4374125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95. PubMed PMID: 21390126. Pubmed Central PMCID: 3271441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, Jais JP, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119(8):1901–3. PubMed PMID: 22215888. Pubmed Central PMCID: 3293643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rohr J, Guo S, Huo J, Bouska A, Lachel C, Li Y, et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia. 2015;5:1062–70.

    Google Scholar 

  25. Zeng Y, Feldman AL. Genetics of anaplastic large cell lymphoma. Leuk Lymphoma. 2016;57(1):21–7. PubMed PMID: 26104084.

    Article  CAS  PubMed  Google Scholar 

  26. Iqbal J, Wright G, Wang C, Rosenwald A, Gascoyne RD, Weisenburger DD, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–23. PubMed PMID: 24632715. Pubmed Central PMCID: PMC4014836. Epub 2014/03/19. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166–70. PubMed PMID: 24413734. Pubmed Central PMCID: 3963408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schatz JH, Horwitz SM, Teruya-Feldstein J, Lunning MA, Viale A, Huberman K, et al. Targeted mutational profiling of peripheral T-cell lymphoma not otherwise specified highlights new mechanisms in a heterogeneous pathogenesis. Leukemia. 2015;29(1):237–41. PubMed PMID: 25257991. Pubmed Central PMCID: 4286477.

    Article  CAS  PubMed  Google Scholar 

  29. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B, et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood. 2002;99(4):1474–7. PubMed PMID: 11830502.

    Article  CAS  PubMed  Google Scholar 

  30. Schmitz R, Stanelle J, Hansmann ML, Kuppers R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol. 2009;4:151–74. PubMed PMID: 19400691.

    Article  CAS  PubMed  Google Scholar 

  31. Pillai RK, Chan WC. Pathogenesis of lymphomas. In: Zain J, Kwak L, editors. Management of lymphomas: a case-based approach. Adis, Cham: Springer International Publishing; 2017. p. 11–31.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju K. Pillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pillai, R.K., Nathwani, B.N., Yang, L. (2019). Predictive Biomarkers and Targeted Therapies for Lymphoid Malignancies. In: Badve, S., Kumar, G. (eds) Predictive Biomarkers in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-95228-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95228-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95227-7

  • Online ISBN: 978-3-319-95228-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics