Skip to main content

Predictive Biomarkers and Targeted Therapies in Immuno-oncology

  • Chapter
  • First Online:
Predictive Biomarkers in Oncology

Abstract

Cancer immunotherapy (CIT) has transformed our approach in diagnosis and treatment of cancer. However, durable responses or cures are only seen in a minority of patients, illustrating the need for reliable biomarkers that identify patients most likely to receive meaningful clinical benefit. PD-L1 immunohistochemistry (IHC) has been extensively used in clinical development programs for anti-PD-L1/PD-1 targeted therapies. Notably, four independently developed PD-L1 IHC assays have demonstrated clinically meaningful predictive value in several indications and are approved as companion or complementary diagnostics. PD-L1 IHC is by no means a flawless biomarker or diagnostic. Numerous studies have found that a subset of PD-L1 negative patients do in fact derive clinical benefit from CIT therapy, highlighting the need for more precise diagnostic tools. Gene signatures with emphasis on immune-related biology and tumor mutation burden, a surrogate for neoantigen presentation, have both emerged as new promising CIT biomarkers and have demonstrated predictive value in exploratory clinical studies. As of today, neither of these biomarkers has gained approval as a companion or complementary diagnostic or has shown the capacity to accurately capture all patients that could potentially benefit from CIT. It is likely, based on the complexity of the tumor microenvironment, that more than one biomarker will be required to identify patients that benefit from CIT in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.

    Article  CAS  PubMed  Google Scholar 

  4. Dempke WCM, et al. Second- and third-generation drugs for immuno-oncology treatment-the more the better? Eur J Cancer. 2017;74:55–72.

    Article  CAS  PubMed  Google Scholar 

  5. Langer CJ, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jotte RM, et al. PS01.53: first-line atezolizumab plus chemotherapy in chemotherapy-naive patients with advanced NSCLC: a phase III clinical program: topic: medical oncology. J Thorac Oncol. 2016;11(11S):S302–3.

    Article  Google Scholar 

  7. Gulley JL, et al. Immunotherapy biomarkers 2016: overcoming the barriers. J Immunother Cancer. 2017;5(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yuan J, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer. 2016;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eggermont AM, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375(19):1845–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horn L, et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 2017;35(35):3924–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Motzer RJ, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Younes A, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferris RL, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma P, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.

    Article  CAS  PubMed  Google Scholar 

  16. Overman MJ, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. El-Khoueiry AB, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weber J, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.

    Article  CAS  PubMed  Google Scholar 

  19. Robert C, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  20. Herbst RS, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

    Article  CAS  PubMed  Google Scholar 

  21. Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  22. Chen R, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bellmunt J, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balar AV, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–92.

    Article  CAS  PubMed  Google Scholar 

  25. Bauml J, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;35(14):1542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rittmeyer A, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  PubMed  Google Scholar 

  27. Rosenberg JE, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–24.

    Article  CAS  PubMed  Google Scholar 

  29. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  30. Gnjatic S, et al. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer. 2017;5:44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Scheerens H, et al. Current status of companion and complementary diagnostics: strategic considerations for development and launch. Clin Transl Sci. 2017;10(2):84–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirsch FR, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12(2):208–22.

    Article  PubMed  Google Scholar 

  33. Hendry S, et al. Comparison of four PD-L1 immunohistochemical assays in lung cancer. J Thorac Oncol. 2018;13(3):367–76.

    Article  PubMed  Google Scholar 

  34. Rimm DL, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017;3(8):1051–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gadgeel S, et al. 1296OClinical efficacy of atezolizumab (Atezo) in PD-L1 subgroups defined by SP142 and 22C3 IHC assays in 2L+ NSCLC: results from the randomized OAK study. Ann Oncol. 2017;28(suppl_5):mdx380.001–mdx380.001.

    Google Scholar 

  36. Kerr KM. The PD-L1 immunohistochemistry biomarker: two steps forward, one step back? J Thorac Oncol. 2018;13(3):291–4.

    Article  PubMed  Google Scholar 

  37. Hamid O, et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med. 2011;9:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tarhini AA, et al. Expression profiles of immune-related genes are associated with neoadjuvant ipilimumab clinical benefit. Oncoimmunology. 2017;6(2):e1231291.

    Article  CAS  PubMed  Google Scholar 

  39. Fehrenbacher L, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46.

    Article  CAS  PubMed  Google Scholar 

  40. Gadgeel S, et al. PL04a.02: OAK, a randomized Ph III study of atezolizumab vs docetaxel in patients with advanced NSCLC: results from subgroup analyses. J Thorac Oncol. 2017;12(1):S9–S10.

    Article  Google Scholar 

  41. Reck M, et al. LBA1_PRPrimary PFS and safety analyses of a randomized phase III study of carboplatin + paclitaxel +/− bevacizumab, with or without atezolizumab in 1L non-squamous metastatic nsclc (IMPOWER150). Ann Oncol. 2017;28(suppl_11):mdx760.002–mdx760.002.

    Article  Google Scholar 

  42. Higgs BW, et al. Relationship of baseline tumoral IFNγ mRNA and PD-L1 protein expression to overall survival in durvalumab-treated NSCLC patients. J Clin Oncol. 2016;34(15_suppl):3036–3036.

    Article  Google Scholar 

  43. Ayers M, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Powles T, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.

    Article  CAS  PubMed  Google Scholar 

  48. Kowanetz M, et al. OA20.01 tumor mutation burden (TMB) is associated with improved efficacy of atezolizumab in 1L and 2L+ NSCLC patients. J Thorac Oncol. 2017;12(1):S321–2.

    Article  Google Scholar 

  49. Mutation load offers predictive biomarker in SCLC. Cancer Discov. 2017. [Epub ahead of print]. https://doi.org/10.1158/2159-8290.CD-NB2017-154.

  50. Carbone DP, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gandara DR, et al. 1295OBlood-based biomarkers for cancer immunotherapy: tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK). Ann Oncol. 2017;28(suppl_5):mdx380-mdx380.

    Article  Google Scholar 

  52. Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Masucci GV, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume I – pre-analytical and analytical validation. J Immunother Cancer. 2016;4:76.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dobbin KK, et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume II – clinical validation and regulatory considerations. J Immunother Cancer. 2016;4:77.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Koeppen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koeppen, H., McCleland, M.L., Kowanetz, M. (2019). Predictive Biomarkers and Targeted Therapies in Immuno-oncology. In: Badve, S., Kumar, G. (eds) Predictive Biomarkers in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-95228-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95228-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95227-7

  • Online ISBN: 978-3-319-95228-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics