Skip to main content

Signaling of the ErbB Receptor Family in Carcinogenesis and the Development of Targeted Therapies

  • Chapter
  • First Online:
Predictive Biomarkers in Oncology

Abstract

The epidermal growth factor receptor (EGFR) family of tyrosine kinases (RTKs) plays several crucial roles in the proliferation of many types of cells—notably epithelial—and many other cells as well as in the pathogenesis and progression of a variety of carcinomas. Activation of the ErbB receptors, either by their ligand or by genetic amplification or mutations, has been associated with many aspects of transformation. As a result, many therapeutic agents have been developed which target distinct receptors or receptor complexes within this family. Currently, therapeutic drugs specifically targeting ErbB receptors have been approved for colorectal, head and neck, lung, breast, esophageal, gastric, and pancreatic cancers. Herein, we review the discovery of the ErbB receptors, signaling pathways by activated receptors, and clinical application of ErbB inhibitors. Also discussed are the challenges for the still-developing future of ErbB inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4E-BPs:

eIF-4E-binding proteins

ADC:

Antibody-drug conjugate

AP-1:

Activator protein-1

AR:

Amphiregulin

BBB:

Blood-brain barrier

BTC:

Betacellulin

CAR-T:

Chimeric antigen receptor T cells

CEP17:

HER2/neu-to-chromosome 17 centromere

CR:

Complete response

CR:

Cysteine-rich domain

DAG:

Diacylglycerol

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EP:

Epigen

ErbB:

Avian erythroblastosis oncogene B

ERK:

Extracellular signal-regulated kinases

FFPET:

Formalin-fixed, paraffin-embedded tissue

FISH:

Fluorescent in situ hybridization

Grb2:

Growth factor receptor-bound protein 2

HB-EGF:

Heparin-binding EGF

HER:

Human epidermal growth factor receptor

IHC:

Immunohistochemistry

JAK:

Janus kinase

L:

Large EGF-binding domain

MAPK:

Mitogen-activated protein kinase

mCRC:

Metastatic colorectal cancer

mTOR:

Mammalian target of rapamycin

NRG:

Neuregulins

NSCLC:

Non-small cell lung cancer

ORR:

Objective response rate

OS:

Overall survival

p70S6K:

p70 ribosomal S6 kinase

PH:

Pleckstrin-homology

PI3K:

Phosphatidylinositol 3-kinase

PIP3:

Phosphatidylinositol (3,4,5) trisphosphate

PKB:

Protein kinase B

PKC:

Protein kinase C

PLC:

Phospholipase C

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

Raf:

Rapidly accelerated fibrosarcoma

Ras:

Rat sarcoma

RTKs:

Receptor tyrosine kinases

scFv:

Single-chain variable fragment

Shc2:

Src homology 2

SHP:

SH2 domain-containing inositol 5′-phosphatase

SOS:

Son of sevenless

SRS:

Stereotactic radiosurgery

STAT:

Signal transducer and activator of transcription

T-DM1:

Ado-trastuzumab emtansine

TGF-α:

Transforming growth factor-α

TKI:

Tyrosine kinase inhibitor

WBRT:

Whole brain radiation therapy

References

  1. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature. 1984;307(5951):521–7. PubMed PMID: 6320011.

    Article  CAS  PubMed  Google Scholar 

  2. Drebin JA, Shilo BZ, Weinberg RA, Greene MI. Preliminary evidence of an association between an activated cellular transforming gene and a tumor specific transplantation antigen. In: Vitetta E, editor. ICN-UCLA Symposia. New York: Academic Press; 1982.

    Google Scholar 

  3. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest. 2007;117(8):2051–8. Epub 2007/08/03. https://doi.org/10.1172/JCI32278. PubMed PMID: 17671639; PMCID: 1934579.

    Article  CAS  PubMed Central  Google Scholar 

  5. Qian X, LeVea CM, Freeman JK, Dougall WC, Greene MI. Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: a mechanism of interreceptor kinase activation and transphosphorylation. Proc Natl Acad Sci U S A. 1994;91(4):1500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nyati MK, Morgan MA, Feng FY, Lawrence TS. Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer. 2006;6(11):876–85. https://doi.org/10.1038/nrc1953.

    Article  CAS  PubMed  Google Scholar 

  7. Drebin JA, Link VC, Greene MI. Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo. Oncogene. 1988;2(4):387–94. Epub 1988/04/01. PubMed PMID: 2896329.

    CAS  PubMed  Google Scholar 

  8. Cai Z, Zhang G, Zhou Z, Bembas K, Drebin JA, Greene MI, Zhang H. Differential binding patterns of monoclonal antibody 2C4 to the ErbB3-p185her2/neu and the EGFR-p185her2/neu complexes. Oncogene 2008;27(27):3870–4. Epub 2008/02/12. https://doi.org/10.1038/onc.2008.13. PubMed PMID: 18264138; PMCID: 2819401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2003;21(14):2787–99. Epub 2003/07/16. https://doi.org/10.1200/JCO.2003.01.504. PubMed PMID: 12860957.

    Article  CAS  PubMed  Google Scholar 

  10. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105(6):2070–5. Epub 2008/01/30. https://doi.org/10.1073/pnas.0709662105. PubMed PMID: 18227510; PMCID: 2538882.

    Article  CAS  Google Scholar 

  11. Lin NU, Eierman W, Greil R, Campone M, Kaufman B, Steplewski K, et al. Randomized phase II study of lapatinib plus capecitabine or lapatinib plus topotecan for patients with HER2-positive breast cancer brain metastases. J Neuro-Oncol. 2011;105(3):613–20. https://doi.org/10.1007/s11060-011-0629-y.

    Article  CAS  Google Scholar 

  12. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF, American Society of Clinical O, College of American P. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013. https://doi.org/10.1200/JCO.2013.50.9984. PubMed PMID: 24101045.

    Article  PubMed  Google Scholar 

  13. Lam L, Czerniecki BJ, Fitzpatrick E, Xu S, Schuchter L, Xu X, Zhang H. Interference-free HER2 ECD as a serum biomarker in breast cancer. J Mol Biomark Diagn 2014;4(3):151. Epub 2014/08/05. https://doi.org/10.4172/2155-9929.1000151. PubMed PMID: 25089226; PMCID: 4114390.

  14. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–55. https://doi.org/10.1093/jnci/dji112. PubMed PMID: 15870435.

    Article  CAS  PubMed  Google Scholar 

  15. Keith KC, Lee Y, Ewend MG, Zagar TM, Anders CK. Activity of Trastuzumab-Emtansine (Tdm1) in Her2-positive breast cancer brain metastases: a case series. Cancer Treat Commun 2016;7:43–6. https://doi.org/10.1016/j.ctrc.2016.03.005. PubMed PMID: 27114895; PMCID: PMC4840897.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baik CS, Chamberlain MC, Chow LQ. Targeted therapy for brain metastases in EGFR-mutated and ALK-rearranged non-small-cell lung cancer. J Thorac Oncol. 2015;10(9):1268–78. https://doi.org/10.1097/JTO.0000000000000615. PubMed PMID: 26107553.

    Article  CAS  PubMed  Google Scholar 

  17. Freedman RA, Gelman RS, Wefel JS, Melisko ME, Hess KR, Connolly RM, et al. Translational breast cancer research consortium (TBCRC) 022: a phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J Clin Oncol. 2016;34(9):945–52. https://doi.org/10.1200/JCO.2015.63.0343. PubMed PMID: 26834058; PMCID: PMC5070554 online at http://www.jco.org. Author contributions are found at the end of this article.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeng Q, Wang J, Cheng Z, Chen K, Johnstrom P, Varnas K, et al. Discovery and evaluation of clinical candidate AZD3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor. J Med Chem. 2015;58(20):8200–15. https://doi.org/10.1021/acs.jmedchem.5b01073. PubMed PMID: 26313252.

    Article  CAS  PubMed  Google Scholar 

  19. Berghoff AS, Bago-Horvath Z, Dubsky P, Rudas M, Pluschnig U, Wiltschke C, et al. Impact of HER-2-targeted therapy on overall survival in patients with HER-2 positive metastatic breast cancer. Breast J. 2013;19(2):149–55. Epub 2013/01/29. https://doi.org/10.1111/tbj.12070.

    Article  CAS  PubMed  Google Scholar 

  20. Merry CR, McMahon S, Forrest ME, Bartels CF, Saiakhova A, Bartel CA, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget. 2016;7(33):53230–44. https://doi.org/10.18632/oncotarget.10637. PubMed PMID: 27449296; PMCID: PMC5288181.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu YX. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010;18(2):160–70. Epub 2010/08/17. https://doi.org/10.1016/j.ccr.2010.06.014. PubMed PMID: 20708157; PMCID: 2923645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bianchini G, Gianni L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol. 2014;15(2):e58–68. Epub 2014/02/01. https://doi.org/10.1016/S1470-2045(13)70477-7. PubMed PMID: 24480556.

    Article  CAS  PubMed  Google Scholar 

  23. Nagai Y, Tsuchiya H, Runkle EA, Young PD, Ji MQ, Norton L, Drebin JA, Zhang H, Greene MI. Disabling of the erbB pathway followed by IFN-gamma modifies phenotype and enhances genotoxic eradication of breast tumors. Cell Rep 2015;12(12):2049–59. Epub 2015/09/15. https://doi.org/10.1016/j.celrep.2015.08.044. PubMed PMID: 26365188; PMCID: PMC4591220.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Lam L, Nagai Y, Zhu Z, Chen X, Ji MQ, Greene MI. A targeted immunotherapy approach for HER2/neu transformed tumors by coupling an engineered effector domain with interferon-γ. Oncoimmunology. 2018;7(4):e1300739. PMCID:PMC5889208.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jia Y, Yun CH, Park E, Ercan D, Manuia M, Juarez J, Xu C, Rhee K, Chen T, Zhang H, Palakurthi S, Jang J, Lelais G, DiDonato M, Bursulaya B, Michellys PY, Epple R, Marsilje TH, McNeill M, Lu W, Harris J, Bender S, Wong KK, Janne PA, Eck MJ. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016;534(7605):129–32. https://doi.org/10.1038/nature17960. PubMed PMID: 27251290; PMCID: PMC4929832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newick K, O'Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52. https://doi.org/10.1146/annurev-med-062315-120245. PubMed PMID: 27860544.

    Article  CAS  PubMed  Google Scholar 

  27. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96. https://doi.org/10.1200/JCO.2014.58.0225. PubMed PMID: 25800760; PMCID: PMC4429176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51. https://doi.org/10.1038/mt.2010.24. PubMed PMID: 20179677; PMCID: PMC2862534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC, et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res. 2015;75(17):3596–607. https://doi.org/10.1158/0008-5472.CAN-15-0159. PubMed PMID: 26330166; PMCID: PMC4560113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng K, Guo Y, Dai H, Wang Y, Li X, Jia H, et al. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci. 2016;59(5):468–79. https://doi.org/10.1007/s11427-016-5023-8.

    Article  CAS  PubMed  Google Scholar 

  31. Karp DD, Falchook GS, editors. Handbook of targeted cancer therapy. Philadelphia, PA: Wolters Kluwer; 2015.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Breast Cancer Research Foundation and the National Institutes of Health to M.I.G. (R01CA089481, R01CA149425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, Z., Grover, P., Zhu, Z., Greene, M.I., Zhang, H. (2019). Signaling of the ErbB Receptor Family in Carcinogenesis and the Development of Targeted Therapies. In: Badve, S., Kumar, G. (eds) Predictive Biomarkers in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-95228-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95228-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95227-7

  • Online ISBN: 978-3-319-95228-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics