Skip to main content

Extremal Reissner–Nordström Black Holes

  • Chapter
  • First Online:
Dynamics of Extremal Black Holes

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 33))

  • 731 Accesses

Abstract

In this Chapter we thoroughly review the geometry of extremal Reissner–Nordström black holes. We also present the main results on the asymptotics of linear perturbations on such backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is the function t that is singular at these points.

  2. 2.

    With respect to the coordinate system \((\rho =r,\theta ,\varphi )\) on \(\Sigma _0\).

  3. 3.

    See also Sect. 2.6 for a discussion on the interior of dynamical extremal black holes.

References

  1. H. Reissner, Über die eigengravitation des elektrischen feldes nach der Einstein’schen theorie. Annalen der Physik

    Google Scholar 

  2. G. Nordström, On the energy of the gravitational field in Einstein’s theory, in Verhandl. Koninkl. Ned. Akad. Wetenschap. (1918), pp. 1201–1208

    Google Scholar 

  3. J. Sbierski, The \(C^0\)-inextendibility of the Schwarzschild spacetime and the spacelike diameter in lorentzian geometry (2015), arXiv:1507.00601

  4. D. Marolf, The danger of extremes. Gen. Relativ. Gravit. 42, 2337–2343 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Murata, H.S. Reall, N. Tanahashi, What happens at the horizon(s) of an extreme black hole? Class. Quantum Gravity 30, 235007 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Sbierski, Characterisation of the energy of Gaussian beams on Lorentzian manifolds with applications to black hole spacetimes. Anal. Part. Diff. Eq. 8, 1379–1420 (2015)

    MathSciNet  MATH  Google Scholar 

  7. W. Couch, R. Torrence, Conformal invariance under spatial inversion of extreme Reissner–Nordström black holes. Gen. Rel. Gravity 16, 789–792 (1984)

    Article  ADS  Google Scholar 

  8. H. Godazgar, M. Godazgar, C.N. Pope, Aretakis charges and asymptotic null infinity. Phys. Rev. D 96, 084055 (2017)

    Article  ADS  Google Scholar 

  9. S. Aretakis, Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307, 17–63 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Aretakis, Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Annales Henri Poincaré 12, 1491–1538 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Aretakis, The wave equation on extreme Reissner–Nordström black hole spacetimes: stability and instability results (2010), arXiv:1006.0283

  12. Y. Angelopoulos, S. Aretakis, D. Gajic, The trapping effect on degenerate horizons. Annales Henri Poincaré 18(5), 1593–1633 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Lucietti, K. Murata, H.S. Reall, N. Tanahashi, On the horizon instability of an extreme Reissner–Nordström black hole. JHEP 1303, 035 (2013), arXiv:1212.2557

  14. O. Sela, Late-time decay of coupled electromagnetic and gravitational perturbations outside an extremal charged black hole. Phys. Rev. D 94, 084006 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Aretakis, On a non-linear instability of extremal black holes. Phys. Rev. D 87, 084052 (2013)

    Article  ADS  Google Scholar 

  16. P. Bizon, M. Kahl, A Yang–Mills field on the extremal Reissner–Nordström black hole. Class. Quantum Gravity 33, 175013 (2016)

    Article  ADS  Google Scholar 

  17. Y. Angelopoulos, S. Aretakis, D. Gajic, Asymptotic blow-up for a class of semi-linear wave equations on extremal Reissner–Nordström spacetimes (2016), arXiv:1612.01562

  18. Y. Angelopoulos, Global spherically symmetric solutions of non-linear wave equations with null condition on extremal Reissner–Nordström spacetimes. Int. Math. Res. Not. 11, 3279–3355 (2016)

    Article  Google Scholar 

  19. S. Hadar, H.S. Reall, Is there a breakdown of effective field theory at the horizon of an extremal black hole? J. High Energy Phys. 2017(12), 62 (2017)

    Article  MathSciNet  Google Scholar 

  20. K. Murata, Instability of higher dimensional extreme black holes. Class. Quantum Gravity 30, 075002 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Tsukamoto, M. Kimura, T. Harada, High energy collision of particles in the vicinity of extremal black holes in higher dimensions: Banados–Silk–West process as linear instability of extremal black holes. Phys. Rev. D 89, 024020 (2014)

    Article  ADS  Google Scholar 

  22. J. Bičák, Gravitational collapse with charge and small asymmetries I: scalar perturbations. Gen. Relativ. Gravit. 3, 331–349 (1972)

    Article  ADS  Google Scholar 

  23. H. Onozawa, T. Mishima, T. Okamura, H. Ishihara, Quasinormal modes of maximally charged black holes. Phys. Rev. D 53, 7033 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  24. C.J. Blaksley, L.M. Burko, Late-time tails in the Reissner–Nordström spacetime revisited. Phys. Rev. D 76, 104035 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Ori, Late-time tails in extremal Reissner–Nordström spacetime (2013), arXiv:1305.1564

  26. O. Sela, Late-time decay of perturbations outside extremal charged black hole. Phys. Rev. D 93, 024054 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Casals, S.E. Gralla, P. Zimmerman, Horizon instability of extremal Kerr black holes: nonaxisymmetric modes and enhanced growth rate. Phys. Rev. D 94, 064003 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Angelopoulos, S. Aretakis, D. Gajic, Late-time asymptotics for the wave equation on extremal Reissner–Nordström backgrounds, preprint (2018)

    Google Scholar 

  29. J. Bičák, Gravitational collapse with charge and small asymmetries I. Scalar perturbations. Gen. Relativ. Gravit. 3, 331–349 (1972)

    Article  ADS  Google Scholar 

  30. P. Bizon, H. Friedrich, A remark about the wave equations on the extreme Reissner–Nordström black hole exterior. Class. Quantum Gravity 30, 065001 (2013)

    Article  ADS  Google Scholar 

  31. S. Aretakis, A note on instabilities of extremal black holes from afar. Class. Quantum Gravity 30, 095010 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. H. Koyama, A. Tomimatsu, Asymptotic power-law tails of massive scalar fields in a Reissner–Nordström background. Phys. Rev. D 63, 064032 (2001)

    Article  ADS  Google Scholar 

  33. S. Bhattacharjee, B. Chakrabarty, D. D. K. Chow, P. Paul, and A. Virmani, On late time tails in an extreme Reissner–Nordström black hole: Frequency domain analysis (2018), arxiv: 1805.10655

  34. J. Lucietti, H. Reall, Gravitational instability of an extreme Kerr black hole. Phys. Rev. D 86, 104030 (2012)

    Article  ADS  Google Scholar 

  35. L.M. Burko, G. Khanna, Linearized stability of extreme black holes. Phys. Rev. D 97, 061502 (2018)

    Article  ADS  Google Scholar 

  36. S.E. Gralla, P. Zimmerman, Critical exponents of extremal Kerr perturbations. Class. Quantum Gravity 35(9) (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. Y. Angelopoulos, S. Aretakis, D. Gajic, Horizon hair of extremal black holes and measurements at null infinity. Phys. Rev. Lett. 121, 131102 (2018)

    Google Scholar 

  38. D. Gajic, Linear waves in the interior of extremal black holes I. Commun. Math. Phys. 353, 717–770 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. D. Gajic, Linear waves in the interior of extremal black holes II. Annales Henri Poincaré 18, 4005–4081 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Franzen, Boundedness of massless scalar waves on Reissner–Nordström interior backgrounds. Commun. Math. Phys. 343, 601–650 (2014)

    Article  ADS  Google Scholar 

  41. J. Luk, S.-J. Oh, Proof of linear instability of the Reissner–Nordström Cauchy horizon under scalar perturbations. Duke Math. J. 166(3), 437–493 (2017)

    Article  MathSciNet  Google Scholar 

  42. P. Hintz, Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime (2015), arXiv:1512.08003

  43. J. Luk, J. Sbierski, Instability results for the wave equation in the interior of Kerr black holes. J. Funct. Anal. 271(7), 1948–1995 (2016)

    Article  MathSciNet  Google Scholar 

  44. M. Dafermos, Y. Shlapentokh-Rothman, Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes. Commun. Math. Phys. 350, 985–1016 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. G. Fournodavlos, J. Sbierski, Generic blow-up results for the wave equation in the interior of a Schwarzschild black hole (2018), arXiv:1804.01941

  46. D. Christodoulou, The Formation of Black Holes in General Relativity (European Mathematical Society Publishing House, 2009)

    Google Scholar 

  47. D. Gajic, J. Luk, The interior of dynamical extremal black holes in spherical symmetry (2017), arXiv:1709.09137

  48. M. Dafermos, J. Luk, The interior of dynamical vacuum black holes I: the \(C^0\)-stability of the Kerr Cauchy horizon (2017), arXiv:1710.01722

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos Aretakis .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aretakis, S. (2018). Extremal Reissner–Nordström Black Holes. In: Dynamics of Extremal Black Holes. SpringerBriefs in Mathematical Physics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-95183-6_2

Download citation

Publish with us

Policies and ethics