Skip to main content

Introduction to General Relativity and Black Hole Dynamics

  • Chapter
  • First Online:
Dynamics of Extremal Black Holes

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 33))

  • 733 Accesses

Abstract

In this Chapter we provide the general framework for curved spaces and introduce the notions of Lorentzian geometry which are necessary for understanding the mathematical aspects of general relativity and black hole dynamics. We also present rigorous results on the asymptotics of linear perturbations for sub-extremal black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity, we will drop the index and thus by g we will also mean \(g_{x}\).

  2. 2.

    Note that \(\mathcal {I}^{+}(x)\subset \mathcal {M}\) denotes the chronological future of x whereas \(\mathcal {I}^{+}_{x}\subset T_{x}\mathcal {M}\) denotes the set of all future-directed timelike vectors in \(T_{x}\mathcal {M}\).

  3. 3.

    The sharpness of the decay rate of the time derivative of \(\psi \) along the event horizon was first established by Luk and Oh [42].

References

  1. S. Hawking, G.F.R. Ellis, The Large Scale Structure of Spacetime (Cambridge University Press, Cambridge, 1973)

    Book  Google Scholar 

  2. R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984)

    Book  Google Scholar 

  3. M. Dafermos, I. Rodnianski, Lectures on black holes and linear waves, Evolution Equations. Clay Mathematics Proceedings, vol. 17 (American Mathematical Society, Providence, 2013), pp. 97–205, arXiv:0811.0354

  4. Y. Choquét-Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. Choquét-Bruhat, R. Geroch, Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Christodoulou, Mathematical Problems of General Relativity I (EMS, 2008)

    Google Scholar 

  7. J. Sbierski, On the existence of a maximal Cauchy development for the Einstein equations - a dezornification. Annales Henri Poincaré 17(2), 301–329 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Christodoulou, S. Klainerman, The Global Nonlinear Stability of the Minkowski Space (Princeton University Press, Princeton, 1994)

    Book  Google Scholar 

  9. S. Klainerman, F. Nicolo, The Evolution Problem in General Relativity, Progress in Mathematical Physics (Birkhaüser, Basel)

    Google Scholar 

  10. D. Christodoulou, On the global initial value problem and the issue of singularities. Class. Quantum Gravity 16, A23–A35 (1999)

    Article  MathSciNet  Google Scholar 

  11. M. Dafermos, I. Rodnianski, The redshift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62, 859–919 (2009), arXiv:0512.119

  12. M. Dafermos, I. Rodnianski, Y. Shlapentokh-Rothman, Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case \(|a| < m\). Ann. Math. 183, 787–913 (2016)

    Article  MathSciNet  Google Scholar 

  13. M. Dafermos, G. Holzegel, I. Rodnianski, Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case \(|a| \ll m\) (2017), arXiv:1711.07944

  14. M. Dafermos, I. Rodnianski, A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162, 381–457 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Blue, A. Soffer, Phase space analysis on some black hole manifolds. J. Funct. Anal. 256, 1–90 (2009)

    Article  MathSciNet  Google Scholar 

  16. D. Civin, Stability of charged rotating black holes for linear scalar perturbations. Ph.D. thesis, 2014

    Google Scholar 

  17. G. Moschidis, The \(r^{p}\)-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2, 6 (2016)

    Article  MathSciNet  Google Scholar 

  18. V. Schlue, Linear waves on higher dimensional Schwarzschild black holes. Anal. PDE 6(3), 515–600 (2013)

    Article  MathSciNet  Google Scholar 

  19. D. Tataru, Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135, 361–401 (2013)

    Article  MathSciNet  Google Scholar 

  20. J. Metcalfe, D. Tataru, M. Tohaneanu, Price’s law on nonstationary spacetimes. Adv. Math. 230, 995–1028 (2012)

    Article  MathSciNet  Google Scholar 

  21. L. Andersson, P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. 182, 787–853 (2015)

    Article  MathSciNet  Google Scholar 

  22. R. Donninger, W. Schlag, A. Soffer, A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta. Adv. Math. 226, 484–540 (2011)

    Article  MathSciNet  Google Scholar 

  23. J. Kronthaler, Decay rates for spherical scalar waves in a Schwarzschild geometry (2007), arXiv:0709.3703

  24. P. Hintz, Global well-posedness of quasilinear wave equations on asymptotically de Sitter spaces. Annales de l’institut Fourier 66(4), 1285–2408 (2016)

    Article  MathSciNet  Google Scholar 

  25. S. Dyatlov, Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole. Commun. Math. Phys. 306, 119–163 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Donninger, W. Schlag, A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background. Commun. Math. Phys. 309, 51–86 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Holzegel, J. Smulevici, Decay properties of Klein–Gordon fields on Kerr-AdS spacetimes. Commun. Pure Appl. Math. 66, 1751–1802 (2013)

    Article  MathSciNet  Google Scholar 

  28. G. Holzegel, J. Smulevici, Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes. Anal. PDE 7(5), 1057–1090 (2014)

    Article  MathSciNet  Google Scholar 

  29. P. Hintz, A. Vasy, The global non-linear stability of the Kerr-de Sitter family of black holes (2016), arXiv:1606.04014

  30. M. Dafermos, G. Holzegel, I. Rodnianski, The linear stability of the Schwarzschild solution to gravitational perturbations (2016), arXiv:1601.06467

  31. S. Klainerman, J. Szeftel, Global nonlinear stability of Schwarzschild spacetime under polarized perturbations (2017), arXiv:1711.07597

  32. G. Moschidis, A proof of the instability of AdS for the Einstein–null dust system with an inner mirror, arXiv:1704.08681

  33. Y. Angelopoulos, S. Aretakis, D. Gajic, A vector field approach to almost sharp decay for the wave equation on spherically symmetric, stationary spacetimes (2016), arXiv:1612.01565

  34. Y. Angelopoulos, S. Aretakis, D. Gajic, Late-time asymptotics for the wave equation on spherically symmetric, stationary backgrounds. Adv. Math. 323, 529–621 (2018), arXiv:1612.01566

  35. Y. Angelopoulos, S. Aretakis, D. Gajic, Asymptotics for scalar perturbations from a neighborhood of the bifurcation sphere (2018), arXiv:1802.05692

  36. R. Price, Non-spherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D 3, 2419–2438 (1972)

    Article  ADS  Google Scholar 

  37. E.W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry. Phys. Rev. D 34, 384–408 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  38. C. Gundlach, R. Price, J. Pullin, Late-time behavior of stellar collapse and explosions. I: linearized perturbations. Phys. Rev. D 49, 883–889 (1994)

    Article  ADS  Google Scholar 

  39. L. Barack, Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry. Phys. Rev. D 59 (1999)

    Google Scholar 

  40. E.T. Newman, R. Penrose, 10 exact gravitationally conserved quantities. Phys. Rev. Lett. 15, 231 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  41. E.T. Newman, R. Penrose, New conservation laws for zero rest mass fields in asympotically flat space-time. Proc. R. Soc. A 305, 175204 (1968)

    Article  Google Scholar 

  42. J. Luk, S.-J. Oh, Proof of linear instability of the Reissner–Nordström Cauchy horizon under scalar perturbations. Duke Math. J. 166(3), 437–493 (2017)

    Article  MathSciNet  Google Scholar 

  43. M. Dafermos, Stability and instability of the Cauchy horizon for the spherically symmetric Einstein–Maxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)

    Article  MathSciNet  Google Scholar 

  44. M. Dafermos, The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. LVIII, 0445–0504 (2005)

    Article  MathSciNet  Google Scholar 

  45. M. Dafermos, Black holes without spacelike singularities. Commun. Math. Phys. 332, 729–757 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  46. J. Luk, J. Sbierski, Instability results for the wave equation in the interior of Kerr black holes. J. Funct. Anal. 271(7), 1948–1995 (2016)

    Article  MathSciNet  Google Scholar 

  47. M. Dafermos, Y. Shlapentokh-Rothman, Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes. Commun. Math. Phys. 350, 985–1016 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  48. P. Hintz, Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime (2015), arXiv:1512.08003

  49. A. Franzen, Boundedness of massless scalar waves on Reissner–Nordström interior backgrounds. Commun. Math. Phys. 343, 601–650 (2014)

    Article  ADS  Google Scholar 

  50. J. Luk, S.-J. Oh, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat data I: interior of the black hole region, arXiv:1702.05715

  51. J. Luk, S.-J. Oh, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat data II: exterior of the black hole region, arXiv:1702.05716

  52. G. Compre, R. Oliveri, Self-similar accretion in thin disks around near-extremal black holes. Mon. Not. R. Astron. Soc. 468(4), 4351–4361 (2017)

    Article  ADS  Google Scholar 

  53. M. Kesden, G. Lockhart, E.S. Phinney, Maximum black-hole spin from quasi-circular binary mergers. Phys. Rev. D 82, 124045 (2010)

    Article  ADS  Google Scholar 

  54. M. Volonteri, P. Madau, E. Quataert, M. Rees, The distribution and cosmic evolution of massive black hole spins. Astrophys. J. 620, 69–77 (2005)

    Article  ADS  Google Scholar 

  55. L. Brenneman, Measuring the Angular Momentum of Supermassive Black Holes, Springer Briefs in Astronomy (Springer, Berlin, 2013)

    Book  Google Scholar 

  56. C.S. Reynolds, The spin of supermassive black holes. Class. Quantum Gravity 30, 244004 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  57. L.W. Brenneman, C.S. Reynolds, Constraining black hole spin via X-ray spectroscopy. Astrophys. J. 652(2) (2006)

    Article  ADS  Google Scholar 

  58. L. Brenneman et al., The spin of the supermassive black hole in NGC 3783. Astrophys. J. 736, 103 (2011)

    Article  ADS  Google Scholar 

  59. L. Gou et al., Confirmation via the continuum-fitting method that the spin of the black hole in Cygnus X-1 is extreme. Astrophys. J. 790(1) (2014)

    Article  ADS  Google Scholar 

  60. J.E. McClintock, R. Shafee, R. Narayan, R.A. Remillard, S.W. Davis, L.-X. Li, The spin of the near-extreme Kerr black hole GRS 1915+105. Astrophys. J. 652, 518–539 (2006)

    Article  ADS  Google Scholar 

  61. S. Gralla, S. Hughes, N. Warburton, Inspiral into gargantua. Class. Quantum Gravity 33, 155002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  62. T. Jacobson, Where is the extremal Kerr ISCO? Class. Quantum Gravity 28, 187001 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  63. L. Burko, G. Khanna, Gravitational waves from a plunge into a nearly extremal Kerr black hole. Phys. Rev. D 94(8) (2016)

    Google Scholar 

  64. C.T. Cunningham, J.M. Bardeen, The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 183, 237–264 (1973)

    Article  ADS  Google Scholar 

  65. C.T. Cunningham, J.M. Bardeen, The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 173, L137 (1972)

    Article  ADS  Google Scholar 

  66. S. Gralla, A. Lupsasca, A. Strominger, Observational signature of high spin at the event horizon telescope. Mon. Not. R. Astron. Soc. 475(3), 3829–3853 (2018)

    Article  ADS  Google Scholar 

  67. I. Booth, S. Fairhurst, Extremality conditions for isolated and dynamical horizons. Phys. Rev. D 77, 084005 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  68. J. Lewandowski, T. Pawlowski, Extremal isolated horizons: a local uniqueness theorem. Class. Quantum Gravity 20, 587–606 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  69. P. Hájíc̆ek, Three remarks on axisymmetric stationary horizons. Commun. Math. Phys. 36, 305–320 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  70. S. Hollands, A. Ishibashi, On the stationary implies axisymmetric theorem for extremal black holes in higher dimensions. Commun. Math. Phys. 291, 403–441 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  71. P. Figueras, J. Lucietti, On the uniqueness of extremal vacuum black holes. Class. Quantum Gravity 27, 095001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  72. P. Chruściel, H. Reall, P. Tod, On non-existence of static vacuum black holes with degenerate components of the event horizon. Class. Quantum Gravity 23, 549–554 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  73. P. Chruściel, L. Nguyen, A uniqueness theorem for degenerate Kerr–Newman black holes. Annales Henri Poincaré 11, 585–609 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  74. A.J. Amsel, G.T. Horowitz, D. Marolf, M.M. Roberts, Uniqueness of extremal Kerr and Kerr–Newman black holes. Phys. Rev. D 81, 024033 (2010)

    Article  ADS  Google Scholar 

  75. R. Meinel, M. Ansorg, A. Kleinwachter, G. Neugebauer, D. Petrof, Relativistic Figures of Equilibrium (Cambrdige University Press, Cambrdige, 2008)

    Book  Google Scholar 

  76. H.K. Kunduri, J. Lucietti, Black lenses in string theory. Phys. Rev. D 94, 064007 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  77. S. Dain, Angular-momentummass inequality for axisymmetric black holes. Phys. Rev. Lett. 96, 101101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  78. S. Dain, Proof of the angular momentum-mass inequality for axisymmetric black holes. J. Diff. Geom. 79, 33–67 (2008)

    Article  MathSciNet  Google Scholar 

  79. P.T. Chruściel, Y. Li, G. Weinstein, Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular-momentum. Ann. Phys. 323, 2591–2613 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  80. A. Alaee, M. Khuri, H. Kunduri, Proof of the mass-angular momentum inequality for bi-axisymmetric black holes with spherical topology. Adv. Theor. Math. Phys. 20, 1397–1441 (2016)

    Article  MathSciNet  Google Scholar 

  81. A. Alaee, M. Khuri, H. Kunduri, Mass-angular momentum inequality for black ring spacetimes. Phys. Rev. Lett. 119, 071101 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  82. A. Alaee, M. Khuri, H. Kunduri, Bounding horizon area by angular momentum, charge, and cosmological constant in 5-dimensional minimal supergravity (2017), arXiv:1712.01764

  83. S. Dain, J. Jaramillo, M. Reiris, Area-charge inequality for black holes. Class. Quantum Gravity 29(3) (2012)

    Article  ADS  MathSciNet  Google Scholar 

  84. S. Dain, Extreme throat initial data set and horizon area-angular momentum inequality for axisymmetric black holes. Phys. Rev. D 82, 104010 (2010)

    Article  ADS  Google Scholar 

  85. S. Dain, M. Reiris, Area-angular-momentum inequality for axisymmetric black holes. Phys. Rev. Lett. 107, 051101 (2011)

    Article  ADS  Google Scholar 

  86. M.E.G. Clement, J.L. Jaramillo, M. Reiris, Proof of the area-angular momentum-charge inequality for axisymmetric black holes. Class. Quantum Gravity 30(6) (2013)

    Article  ADS  MathSciNet  Google Scholar 

  87. M. Reiris, On extreme Kerr-throats and zero temperature black holes. Class. Quantum Gravity 31(2) (2013)

    Article  ADS  MathSciNet  Google Scholar 

  88. S.W. Hawking, G.T. Horowitz, S.F. Ross, Entropy, area, and black hole pairs. Phys. Rev. D 51, 4302–4314 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  89. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99–104 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  90. R. Emparan, G.T. Horowitz, Microstates of a neutral black hole in M theory. Phys. Rev. Lett. 97, 141601 (2006)

    Article  ADS  Google Scholar 

  91. G. Gibbons, Aspects of Supergravity Theories. In supersymmetry, Supergravity, and Related topics. (World Scientific, 1985)

    Google Scholar 

  92. P. Claus, M. Derix, R. Kallosh, J. Kumar, P. Townsend, A.V. Proeyen, Black holes and superconformal mechanics. Phys. Rev. Lett. 81, 4553–4556 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  93. A. Saghatelian, Near-horizon dynamics of particle in extreme Reissner–Nordstrom and Clement–Galtsov black hole backgrounds: action-angle variables. Class. Quantum Gravity 29, 245018 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  94. H.K. Kunduri, J. Lucietti, H.S. Reall, Near-horizon symmetries of extremal black holes. Class. Quantum Gravity 24, 4169–4190 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  95. H. Kunduri, J. Lucietti, A classification of near-horizon geometries of extremal vacuum black holes. J. Math. Phys. 50, 082502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  96. H.K. Kunduri, J. Lucietti, Uniqueness of near-horizon geometries of rotating extremal AdS(4) black holes. Class. Quantum Gravity 26, 055019 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  97. P. Chruściel, K. Tod, The classification of static electro-vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior. Commun. Math. Phys. 271, 577–589 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  98. S. Hollands, A. Ishibashi, All vacuum near-horizon geometries in D-dimensions with (D-3) commuting rotational symmetries. Annales Henri Poincaré 10(8), 1537–1557 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  99. M. Guica, T. Hartman, W. Song, A. Strominger, The Kerr/CFT correspondence. Phys. Rev. D 80, 124008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  100. I. Bredberg, T. Hartman, W. Song, A. Strominger, Black hole superradiance from Kerr/CFT. JHEP 1004, 019 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  101. T. Hartman, K. Murata, T. Nishioka, A. Strominger, CFT duals for extreme black holes. JHEP 2009, 04 (2009)

    Google Scholar 

  102. A.P. Porfyriadis, A. Strominger, Gravity waves from Kerr/CFT. Phys. Rev. D 90, 044038 (2014)

    Article  ADS  Google Scholar 

  103. S. Hadar, A.P. Porfyriadis, A. Strominger, Gravity waves from extreme-mass-ratio plunges into Kerr black holes. Phys. Rev. D 90, 064045 (2014)

    Article  ADS  Google Scholar 

  104. S. Hadar, A. Porfyriadis, A. Strominger, Fast plunges into Kerr black holes. JHEP 7, 78 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  105. A.P. Porfyriadis, Y. Shi, A. Strominger, Photon emission near extreme Kerr black holes. Phys. Rev. D 95, 064009 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  106. J. Ciafre, M.J. Rodriguez, A near horizon extreme binary black hole geometry (2018), arXiv:1804.06985

  107. A. Starobinski, S. Churilov, Amplification of electromagnetic ang gravitational waves scattered by a rotating black hole. Sov. Phys. JETP 38(1), 1–5 (1974)

    ADS  Google Scholar 

  108. S. Detweiler, Black holes and gravitational waves III. The resonant frequencies of rotating holes. Astrophys. J. 239, 292–295 (1980)

    Article  ADS  Google Scholar 

  109. N. Andersson, K. Glampedakis, A superradiance resonance cavity outside rapidly rotating black holes. Phys. Rev. Lett. 84, 4537–4540 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  110. K. Glampedakis, N. Andersson, Late-time dynamics of rapidly rotating black holes. Phys. Rev. D 64, 104021 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  111. H. Yang, A. Zimmerman, A. Zenginoglu, F. Zhang, E. Berti, Y. Chen, Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown. Phys. Rev. D 88, 044047 (2013)

    Article  ADS  Google Scholar 

  112. V. Cardoso, J.L. Costa, K. Destounis, P. Hintz, A. Jansen, Quasinormal modes and strong cosmic censorship. Phys. Rev. Lett. 120, 031103 (2018)

    Article  ADS  Google Scholar 

  113. O.J. Dias, F.C. Eperon, H.S. Reall, J.E. Santos, Strong cosmic censorship in de Sitter space (2018), arXiv:1801.09694

  114. O.J. Dias, H.S. Reall, J.E. Santos, Kerr-CFT and gravitational perturbations. JHEP 101 (2009)

    Google Scholar 

  115. H. Yang, A. Zimmerman, L. Lehner, Turbulent black holes. Phys. Rev. Lett. 114, 081101 (2015)

    Article  ADS  Google Scholar 

  116. G. Lovelace, R. Owen, H.P. Pfeiffer, T. Chu, Binary-black-hole initial data with nearly-extremal spins. Phys. Rev. D 78, 084017 (2008)

    Article  ADS  Google Scholar 

  117. K. Murata, H.S. Reall, N. Tanahashi, What happens at the horizon(s) of an extreme black hole? Class. Quantum Gravity 30, 235007 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  118. I. Booth, Evolutions from extremality. Phys. Rev. D 93, 084005 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  119. Y. Angelopoulos, S. Aretakis, D. Gajic, Asymptotic blow-up for a class of semi-linear wave equations on extremal Reissner–Nordström spacetimes (2016), arXiv:1612.01562

  120. P. Bizon, M. Kahl, A Yang–Mills field on the extremal Reissner–Nordström black hole. Class. Quantum Gravity 33, 175013 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos Aretakis .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aretakis, S. (2018). Introduction to General Relativity and Black Hole Dynamics. In: Dynamics of Extremal Black Holes. SpringerBriefs in Mathematical Physics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-95183-6_1

Download citation

Publish with us

Policies and ethics