Advertisement

Industrial Applications

  • Tomasz LewińskiEmail author
  • Tomasz Sokół
  • Cezary Graczykowski
Chapter

Abstract

The theory of Michell structures teaches us how to optimally transmit the given load to the support, hence shows how to make structures ideally suited to the given load. The exact solutions to the Michell theory have been an inspiration for developing new numerical methods of Topology Optimization, which nowadays does contribute to essential changes in the design methods in many domains of engineering.

References

  1. Aerodynamic water droplet with strong lightweight bone structure, Engineering Design Research Laboratory, Indiana University-Purdue University Indianapolis. http://www.engr.iupui.edu/~tovara/edrl/projects/Litecar.
  2. Ario, I., Nakazawa, M., Tanaka, Y., Tanikura, I., & Ono, S. (2013). Development of a prototype deployable bridge based on origami skill. Automation in Construction, 32, 104–111.CrossRefGoogle Scholar
  3. Baker, W. F., Beghini, A., & Mazurek, A. (2011). Applications of structural optimization in architectural design, ASCE structures congress.Google Scholar
  4. Beghini, L. L. (2013). Building science through topology optimization. Doctoral dissertation, University of Illinois at Urbana-Champaign.Google Scholar
  5. Beghini, A., Beghini, L. L., & Baker, W. F. (2013). Applications of structural optimization in architectural design, ASCE structures congress.Google Scholar
  6. Bołbotowski, K., & Sokół, T. (2016). New method of generating Strut and Tie models using truss topology optimization. In M. Kleiber, T. Burczyński, K. Wilde, J. Górski, K. Winkelmann, & Ł. Smakosz (Eds.), Advances in mechanics: Theoretical, computational and interdisciplinary issues. London UK: CRC Press.Google Scholar
  7. Chikahiro, Y., Ario, I., Pawłowski, P., Graczykowski, C., Holnicki-Szulc, J. (2018). Optimization of the reinforcement layout in scissor type bridge by combination of FEM and Differential Evolution Algorithm (Submitted).Google Scholar
  8. Dewhurst, P. (2005). A general optimality criterion for combined strength and stiffness of dual-material-property structures. International Journal of Mechanical Sciences, 47, 293–302.CrossRefGoogle Scholar
  9. Flügge, W. (1973). Stresses in Shells (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
  10. Foxe, D. M. (2018). Reassessing Zalewski’s shells designs, and surfaces. In C. Mueller, S. Adriaenssens (Eds.), Creativity in Structural Design, Proceedings of the IASS Symposium 2018, July 16–20, 2018, MIT, Boston, USA.Google Scholar
  11. He, L., & Gilbert, M. (2015). Rationalization of trusses generated via layout optimization. Structural and Multidisciplinary Optimization, 52, 677–694.MathSciNetCrossRefGoogle Scholar
  12. He, L., Gilbert, M., Johnson, T., Smith, C. (2018). Human-in-the-Loop Layout and Geometry. In A. Schumacher, T. Vietor, S. Fiebig, K. U. Bletzinger, K. Maute (Eds.), Advances in structural and multidisciplinary optimization. WCSMO 2017. Optimization of structures and components. Cham: Springer.Google Scholar
  13. Hemp, W. S. (1974). Michell framework for uniform load between fixed supports. Engineering Optimization, 1(1), 61–69.CrossRefGoogle Scholar
  14. Holnicki-Szulc, J., & Bielecki, T. (2000). Structures with highest ability of adaptation to overloading. In Proceedings of IUTAM Symposium on Smart Structures and Structronic Systems. 26–29 September 2000. Magdeburg, Germany.Google Scholar
  15. Holnicki-Szulc, J., & Knap, L. (2004). Adaptive crashworthiness concept. International Journal of Impact Engineering, 30(6), 639–663.CrossRefGoogle Scholar
  16. Holnicki-Szulc, J., Maćkiewicz, A., & Kołakowski, P. (1998). Design of adaptive structures for improved load capacity. AIAA Journal, 36(3), 471–476.CrossRefGoogle Scholar
  17. Holnicki-Szulc, J., Pawłowski, P., & Wikło, M. (2003). High-performance impact absorbing materials - The concept, design tools and applications. Smart Materials and Structures, 12, 461–467.CrossRefGoogle Scholar
  18. Kołakowski, P., Wikło, M., & Holnicki-Szulc, J. (2008). The virtual distortion method - A versatile reanalysis tool for structures and systems. Structural and Multidisciplinary Optimization, 36(3), 217–234.CrossRefGoogle Scholar
  19. Kuś, S., & Zalewski, W. (2000). Shaping structures. In Symposium, Conceptual Designing-Structural Shaping. Corrugated Iron Structures. Cable Structures (pp. 11–26) Rzeszów: Rzeszów University of Technology (in Polish).Google Scholar
  20. Lancaster, L. C. (2006). Materials and Construction of the Pantheon in Relation to the Developments in Vaulting in Antiquity. In G. Grasshof, M. Wäfler & M. Heinzelmann (Eds.), The Pantheon in Rome. Contributions to the Conference. Bern, November 9–12, 2006.Google Scholar
  21. Leonhardt, F., & Zellner, W. (1972). Vergleiche zwischen Hange - And Schragkabel brücken für Spann weiten über 600 m (Vol. 32, p. 1972). Zürich: der IVBH-Abhandlugen.Google Scholar
  22. Leonhardt, F. (1986). 1986. PCI Journal (September - October: Cable stayed bridges with prestressed concrete.Google Scholar
  23. Lewiński, T., Czarnecki, S., Czubacki, R., Łukasiak, T., & Wawruch, P. (2018). Constrained versions of the free material design methods and their applications in 3D printing. In A. Schumacher, Th. Vietor, S. Fiebig, K.-U. Bletzinger, K. Maute (Eds.), Advances in Structural and Multidisciplinary Optimization. Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12) (pp. 1317–1332). Cham, Switzerland: Springer International Publishing.Google Scholar
  24. Marzec, Z., & Holnicki-Szulc, J. (1999) Adaptive barriers with maximal impact energy absorption. In Proceedings of 3rd World Congress on Structural and Multidisciplinary Optimization. 17–21 May 1999, Buffalo, NY.Google Scholar
  25. Maute, K., & Ramm, E. (1995a). Adaptive topology optimization. Structural Optimization, 10, 100–112.CrossRefGoogle Scholar
  26. Maute, K., & Ramm, E. (1995b). General shape optimization – an integrated model for topology and shape optimization. In Proceedings of the First World Congress of Structural and Mutidisciplinary Optimization, 28 May–2 June 1995, Goslar, Germany, Elsevier, Oxford, 1995 (pp. 299–306).Google Scholar
  27. Maute, K., Schwartz, S., & Ramm, E. (1998). Adaptive topology optimization of elasto-plastic structures. Structural and Multidisciplinary Optimization, 5, 81–89.CrossRefGoogle Scholar
  28. Mayer, R. R., Kikuchi, N., & Scott, R. A. (1996). Applications of topology optimization techniques to structural crashworthiness. International Journal for Numerical Methods in Engineering, 39, 1383–1403.CrossRefGoogle Scholar
  29. Mazurek, A. (2012). Geometrical aspects of optimum truss like structures for three-force problem. Structural and Multidisciplinary Optimization, 45, 21–32.MathSciNetCrossRefGoogle Scholar
  30. Mazurek, A., Baker, W. F., & Tort, C. (2011). Geometrical aspects of optimum truss like structures. Structural and Multidisciplinary Optimization, 43, 231–242.CrossRefGoogle Scholar
  31. Moore, D. (1995). The Pantheon. www.romanconcrete.com.
  32. Mrzygłód, M., & Kuczek, T. (2014). Structural and Multidisciplinary Optimization, 49(2), 327–336.  https://doi.org/10.1007/s00158-013-0972-z.CrossRefGoogle Scholar
  33. Neves, M. M., Rodrigues, H., & Guedes, J. M. (1995). Generalized topology design of structures with a buckling load criterion. Structural and Multidisciplinary Optimization, 10, 71–78.CrossRefGoogle Scholar
  34. Novozhilov, V. V. (1964). Thin Shell Theory. Groningen, The Netherlands: Nordhoff.CrossRefGoogle Scholar
  35. Pawłowski, P., & Holnicki-Szulc, J. (2004). Adaptive structures under extreme loads – Impact detection, self-adaptation, self-repairing. In Proceedings of 3rd European Conference on Structural Control, 12–15 July 2004, Vienna, Austria.Google Scholar
  36. Pawłowski, P., & Wikło, M. (2004). Design of adaptive structures under random impact conditions. In J. Holnicki-Szulc & C. A. Mota-Soares (Eds.), Advances in smart technologies in structural engineering. Berlin: Springer.Google Scholar
  37. Pedersen, C. B. W. (2003a). Topology optimization design of crushed 2D-frames for desired energy absorption history. Structural and Multidisciplinary Optimization, 25, 368–382.CrossRefGoogle Scholar
  38. Pedersen, C. B. W. (2003b). Topology optimization for crashworthiness of frame structures. International Journal of Crashworthiness, 8, 29–39.CrossRefGoogle Scholar
  39. Pichugin, A. V., Tyas, A., & Gilbert, M. (2012). On the optimality of Hemp’s arch with vertical hangers. Structural and Multidisciplinary Optimization, 46, 17–25.MathSciNetCrossRefGoogle Scholar
  40. Pichugin, A. V., Tyas, A., Gilbert, M., & He, L. (2015). Optimum structure for a uniform load over multiple spans. Structural and Multidisciplinary Optimization, 52, 1041–1050.MathSciNetCrossRefGoogle Scholar
  41. Smith, Ch J, Gilbert, M., Todd, I., & Derguti, F. (2016). Application of layout optimization to the design of additively manufactured metallic components. Structural and Multidisciplinary Optimization, 54, 297–1313.MathSciNetCrossRefGoogle Scholar
  42. Soto, C. A. (2001). Structural topology optimization: From minimizing compliance to maximizing energy absorption. International Journal of Vehicle Design, 25(1), 142–163.MathSciNetCrossRefGoogle Scholar
  43. Soto, C. A. (2002). Application of structural topology optimization in the automotive industry: Past, present and future. In Proceedings of 5th World Congress of Computational Mechanics. 9–12 July 2002, Vienna, Austria.Google Scholar
  44. Stromberg, L. L., Beghini, A., Baker, W. F., & Paulino, G. H. (2011). Application of layout and topology optimization using pattern gradation for the conceptual design of buildings. Structural and Multidisciplinary Optimization, 43, 165–180.CrossRefGoogle Scholar
  45. Stromberg, L. L., Beghini, A., Baker, W. F., & Paulino, G. H. (2012). Topology optimization for braced frames: Combining continuum and beam/column elements. Engineering Structures, 37, 106–124.CrossRefGoogle Scholar
  46. Tyas, A., Pichugin, A. V., & Gilbert, M. (2011). Optimum structure to carry a uniform load between pinned supports: Exact analytical solution. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 467(2128), 1101–1120.MathSciNetCrossRefGoogle Scholar
  47. Victoria, M., Querin, O. M., & Marte, P. (2011). Generation of strut-and-tie models by topology design using different material properties in tension and compression. Structural and Multidisciplinary Optimization, 44, 247–258.CrossRefGoogle Scholar
  48. Wikło, M., & Holnicki-Szulc, J. (2008a). Optimal design of adaptive structures: Part I. Remodeling for impact reception. Structural and Multidisciplinary Optimization, 37(3), 305–318.CrossRefGoogle Scholar
  49. Wikło, M., & Holnicki-Szulc, J. (2008b). Optimal design of adaptive structures: Part II. Adaptation to impact loads. Structural and Multidisciplinary Optimization, 37(4), 351–366.CrossRefGoogle Scholar
  50. Yamakawa, H., Tsutsui, Z., Takemae, K., Ujita, Y., & Suzuki, Y. (1999). Structural optimization for improvement of train crashworthiness in conceptual and preliminary design. In Proceedings of 3rd World Congress on Structural and Multidisciplinary Optimization, 17–21 May 1999, Buffalo, NY.Google Scholar
  51. Zabłocki, W. (2000). Optimization of structures and new forms of tall buildings. Architektura, 74(11), 96–98. (in Polish).Google Scholar
  52. Zalewski, W. (1962). Construction de la toiture du supermarket a Varsovie. In N. Esquillan & Y. Saillard (Eds.), Hanging roofs: Proceedings of the IASS Colloquium on Hanging Roofs, Continuous Metallic Shell Roofs and Superficial Lattice Roofs, Paris 9–11 July, 1962.Google Scholar
  53. Zalewski, W. (1963). Constance de la force comme critere de la forme ationelle d’une construction.Google Scholar
  54. Zalewski, W. (1964). Some new structural forms created in the period 1950–60 (in Polish).Google Scholar
  55. Zalewski, W., & Allen, E. (1998). Shaping Structures. Statics. New York: Wiley.Google Scholar
  56. Zalewski, W., & Zabłocki, W. (2002). Engineering inspirations in shaping tall buildings. In Lightweight Structures in Civil Engineering, Proceedings of the International Symposium, Warsaw, Poland, 24–28 June 2002 (pp. 109–118).Google Scholar
  57. Zalewski, W. (2000). Strength and lightness - The muses of a structural designer. Architektura, 74(11), 94–95. (in Polish).Google Scholar
  58. Zalewski, W. (2005). Shaping structures. Introduction and examples. In Proceedings of the 7th Symposium: New Achievements of Science in Civil Engineering. Shaping Structures, Cable Structures, Corrugated Iron Structures (pp. 49–72), Rzeszów (in Polish).Google Scholar
  59. Zegard, T. (2014). Structural optimization: From continuum and ground structures to additive manufacturing. Doctoral dissertation, University of Illinois at Urbana-Champaign.Google Scholar
  60. Zegard, T., & Paulino, G. H. (2016). Bridging topology optimization and additive manufacturing. Structural and Multidisciplinary Optimization, 53(1), 175–192.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tomasz Lewiński
    • 1
    Email author
  • Tomasz Sokół
    • 1
  • Cezary Graczykowski
    • 2
  1. 1.Faculty of Civil EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations