Advertisement

Extensions of the Michell Theory

  • Tomasz Lewiński
  • Tomasz Sokół
  • Cezary Graczykowski
Chapter

Abstract

The present chapter concerns the extension of the Michell problems towards the multi-load cases and reveals the impact of the Michell theory on the other problems of topology optimization, especially those concerning the optimum material design.

References

  1. Achtziger, W. (1992). Truss topology design under multiple loadings. DFG-Report (FSP Applied Optimization and Control), No. 367, Universitat Bayreuth, FRG.Google Scholar
  2. Achtziger, W. (1993). Minimax compliance truss topology subject to multiple loadings. In M. P. Bendsøe & C. A. Mota Soares (Eds.), Topology optimization of structures (pp. 43–54). Dordrecht: Kluwer.CrossRefGoogle Scholar
  3. Achtziger, W. (1997). Topology optimization of discrete structures: An introduction in view of computational and nonsmooth aspects. In G. I. N. Rozvany (Ed.), Topology optimization in structural mechanics (Vol. 374, pp. 57–100), CISM courses and lectures. Wien: Springer.CrossRefGoogle Scholar
  4. Achtziger, W. (1998). Multiple load truss topology and sizing optimization: Some properties of minimax compliance. Journal of Optimization Theory and Applications, 98(2), 255–280.MathSciNetCrossRefGoogle Scholar
  5. Achtziger, W., Bendsøe, M. P., Ben-Tal, A., & Zowe, J. (1992). Equivalent displacement based formulations for maximum strength truss topology design. IMPACT of Computing in Science and Engineering, 4, 315–345.MathSciNetCrossRefGoogle Scholar
  6. Allaire, G. (2002). Shape optimization by the homogenization method. New York: Springer.CrossRefGoogle Scholar
  7. Bendsøe, M.P., & Sigmund, O. (2004). Topology Optimization: Theory, Methods, and Applications. Berlin: Springer.CrossRefGoogle Scholar
  8. Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1, 193–202.CrossRefGoogle Scholar
  9. Bendsøe, M. P. (1995). Optimization of structural topology, shape and material. Berlin: Springer.CrossRefGoogle Scholar
  10. Bendsøe, M. P., Ben-Tal, A., & Zowe, J. (1994a). Optimization methods for truss geometry and topology design. Structural Optimization, 7, 141–159.CrossRefGoogle Scholar
  11. Bendsøe, M. P., Guedes, J. M., Haber, R. B., Pedersen, P., & Taylor, J. E. (1994b). An analytical model to predict optimal material properties in the context of optimal structural design. Journal of Applied Mechanics, Transaction of ASME, 61, 930–937.MathSciNetCrossRefGoogle Scholar
  12. Ben-Tal, A., & Bendsøe, M. P. (1993). A new method for optimal truss topology design. SIAM Journal on Optimization, 3, 322–358.MathSciNetCrossRefGoogle Scholar
  13. Bouchitté, G., & Buttazzo, G. (2001). Characterization of optimal shapes and masses through Monge–Kantorovich equation. Journal of European Mathematical Society, 3, 139–168.MathSciNetCrossRefGoogle Scholar
  14. Bouchitté, G., & Fragala, I. (2007). Optimality conditions for mass design problems and applications to thin plates. Archive for Rational Mechanics and Analysis, 184, 257–284.MathSciNetCrossRefGoogle Scholar
  15. Cea, J., & Malanowski, K. (1970). An example of a max-min problem in partial differential equations. SIAM Journal on Control, 8, 305–316.MathSciNetCrossRefGoogle Scholar
  16. Czarnecki, S. (2013). Edgeworth-Pareto optimal trusses of least compliance. In S. Jemioło & M. Lutomirska (Eds.), Mechanics of materials (pp. 61–75). Oficyna Wydawnicza Politechniki Warszawskiej.Google Scholar
  17. Czarnecki, S. (2015). Isotropic material design. Computational Methods in Science and Technology, 21, 49–64.CrossRefGoogle Scholar
  18. Czarnecki, S., & Lewiński, T. (2012). A stress-based formulation of the free material design problem with the trace constraint and single loading condition. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(2), 191–204.CrossRefGoogle Scholar
  19. Czarnecki, S., & Lewiński, T. (2013). On minimum compliance problems of thin elastic plates of varying thickness. Structural and Multidisciplinary Optimization, 48(1), 17–31.MathSciNetCrossRefGoogle Scholar
  20. Czarnecki, S., & Lewiński, T. (2014a). A stress-based formulation of the free material design problem with the trace constraint and multiple load conditions. Structural and Multidisciplinary Optimization, 49(5), 707–731.MathSciNetCrossRefGoogle Scholar
  21. Czarnecki, S., & Lewiński, T. (2014b). The Free material design in linear elasticity. In G. I. N. Rozvany & T. Lewiński (Eds.), Topology optimization in structural and continuum mechanics (Vol. 549, pp. 213–257), CISM International Centre for Mechanical Sciences. Courses and Lectures. Wien, CISM, Udine: Springer.CrossRefGoogle Scholar
  22. Czarnecki, S., & Lewiński, T. (2017a). On material design by the optimal choice of Young’s modulus distribution. International Journal of Solids and Structures, 110–111, 315–331.CrossRefGoogle Scholar
  23. Czarnecki, S., & Lewiński, T. (2017b). Pareto optimal design of non-homogeneous isotropic material properties for the multiple loading conditions. Physica Status Solidi B: Basic Solids State Physics, 254(1600821), 1–14.Google Scholar
  24. Czarnecki, S., & Wawruch, P. (2015). The emergence of auxetic material as a result of optimal isotropic design. Physica Status Solidi B, 252, 1–11.CrossRefGoogle Scholar
  25. Czarnecki, S., Łukasiak, T., & Lewiński, T. (2017). The isotropic and cubic material designs. Recovery of the underlying microstructures appearing in the least compliant continuum bodies. Materials, 10(10), 1137.  https://doi.org/10.3390/ma10101137.CrossRefGoogle Scholar
  26. Czarnecki, S., Czubacki, R. Lewiński, T. & Wawruch, P. (2015). Topology optimization of continuum structures made of non-homogeneous materials of isotropic or cubic symmetry, pp. 83–88. In: Q. Li., G. P. Steven & Zhongpu (Leo) Zhang (Eds.), Advances in Structural and Multidisciplinary Optimization – Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimization. International Society for Structural and Multidisciplinary Optimization (ISSMO), Sydney, Australia 7–12, June 2015 (pp. 316–321) (ISBN 13: 978-0-646-94394-7); www.aeromech.usyd.edu.au/WCSMO2015/.
  27. Czubacki, R., & Lewiński, T. (2015). Topology optimization of spatial continuum structures made of non-homogeneous material of cubic symmetry. Journal of Mechanics of Materials and Structures, 10(4), 519–535.MathSciNetCrossRefGoogle Scholar
  28. Drucker, D. C., Shield, R. T. (1957). Design for minimum weight. In: Proceedings of the 9th International Congress for Applied Mechanics (held in Brussels 1956) (Vol. 5, pp. 212–222).Google Scholar
  29. Drucker, D. C., Greenberg, J. H., & Prager, W. (1951). The safety factor of an elastic-plastic body in plane stress. Journal of Applied Mechanics, 18, 371–378.zbMATHGoogle Scholar
  30. Dzierżanowski, G., & Lewiński, T. (2018). Young’s modulus control in material and topology optimization. In: A. Schumacher, Th. Vietor, S. Fiebig, K.-U. Bletzinger, K. Maute (Eds.), Advances in Structural and Multidisciplinary Optimization. Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12) (pp 1374–1385). Cham: Springer International Publishing AG.Google Scholar
  31. Golay, F., & Seppecher, P. (2001). Locking materials and the topology of optimal shapes. European Journal Of Mechanics. A, Solids, 20, 631–644.MathSciNetCrossRefGoogle Scholar
  32. Haslinger, J., Kočvara, M., Leugering, G., & Stingl, M. (2010). Multidisciplinary free material optimization. SIAM Journal on Applied Mathematics, 70(7), 2709–2728.MathSciNetCrossRefGoogle Scholar
  33. Hemp, W. S. (1973). Optimum structures. Oxford: Clarendon.Google Scholar
  34. Kirsch, U. (1989). Optimal topologies of truss structures. Computer Methods in Applied Mechanics and Engineering, 72, 15–28.MathSciNetCrossRefGoogle Scholar
  35. Kočvara, M., & Stingl, M. (2007). Free material optimization for stress constraints. Structural and Multidisciplinary Optimization, 33, 323–335.MathSciNetCrossRefGoogle Scholar
  36. Lewiński, T., Czarnecki, S., Czubacki, R., Łukasiak, T., & Wawruch, P. (2018). Constrained versions of the free material design methods and their applications in 3D printing. In: A. Schumacher, Th. Vietor, S. Fiebig, K.-U. Bletzinger, K. Maute (Eds.), Advances in Structural and Multidisciplinary Optimization. Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12) (pp. 1317–1332). Cham: Springer International Publishing AG.Google Scholar
  37. Lim, T. C. (2015). Auxetic materials and structures. New York: Springer.CrossRefGoogle Scholar
  38. Litvinov, V. G., & Panteleev, A. D. (1980). The problem of optimization of plates of varying thickness. Mekh. Tverdovo Tela, 2, 174–181.Google Scholar
  39. Logo, J., Balogh, B., & Pinter, E. (2018). Topology optimization considering multiple loading. Computers and Structures. (in press).Google Scholar
  40. Makrodimopoulos, A., Bhaskar, A., & Keane, A. J. (2010). A compliance based design problem of structures under multiple load cases. Structural and Multidisciplinary Optimization, 42, 739–743.CrossRefGoogle Scholar
  41. McConnel, R. E. (1974). Least-weight frameworks for loads across span. Journal of Engineering Mechanics Division, 100(5), 885–901.Google Scholar
  42. McKeown, J. J. (1974). A note on the maximum number and density of distribution of members in elastic structures of minimum weight under multiple loading conditions. International Journal of Solids and Structures, 10, 309–312.CrossRefGoogle Scholar
  43. Nagtegaal, J. C., & Prager, W. (1973). Optimal layout of a truss for alternative loads. International Journal of Mechanical Sciences, 15, 583–592.CrossRefGoogle Scholar
  44. Nowak, M., Sokolowski, J., & Zochowski, A. (2018). Justification of a certain algorithm for shape optimization in 3D elasticity. Structural and Multidisciplinary Optimization, 57,721–734.MathSciNetCrossRefGoogle Scholar
  45. Pedersen, P. (1972). On the optimal layout of multi-purpose trusses. Computers and Structures, 2, 695–712.CrossRefGoogle Scholar
  46. Petersson, J. (1999). A finite element analysis of optimal variable thickness sheets. SIAM Journal on Numerical Analysis, 36, 1759–1778.MathSciNetCrossRefGoogle Scholar
  47. Prager, W. (1958). On a problem of optimum design. Brown University, Division of Applied Mechanics, Technical Report No 38.Google Scholar
  48. Prager, W. (1978a). Optimal layout of trusses of finite number of joints. Journal of the Mechanics and Physics of Solids, 26, 241–250.CrossRefGoogle Scholar
  49. Prager, W. (1978b). Nearly optimal design of trusses. Computers and Structures, 8, 451–454.CrossRefGoogle Scholar
  50. Prager, W., & Rozvany, G. N. (1977). Optimization of the structural geometry. In A. R. Bednarek & L. Cesari (Eds.), Dynamical systems (Proceedings of International Conference on Gainsville, Florida) (pp. 265–293). New York: Academic Press.Google Scholar
  51. Prager, W., & Shield, R. T. (1967). A general theory of optimal plastic design. Journal of Applied Mechanics, 34, 184–186. Rozvany, G. J. N. (1976) Optimal design of flexural systems. Oxford: Pergamon.Google Scholar
  52. Pritchard, T. J., Gilbert, M., & Tyas, A. (2005). Plastic layout optimization of large-scale frameworks subject to multiple load cases, member self-weight and with joint length penalties. WCSMO-6, Rio de Janeiro, Brazil, 30 May–03 June.Google Scholar
  53. Ringertz, U. T. (1993). On finding the optimal distribution of material properties. Structural Optimization, 5(4), 265–267.CrossRefGoogle Scholar
  54. Rockafellar, T. (1970). Convex analysis. New Jersey: Princeton University Press.CrossRefGoogle Scholar
  55. Rozvany, G. I. N. (1964). Optimal synthesis of prestressed structures. Journal of the Structural Division ASCE, 90, 189–211.Google Scholar
  56. Rozvany, G. I. N. (1976). Optimal design of flexural systems. Oxford: Pergamon Press.Google Scholar
  57. Rozvany, G. I. N. (1989). Structural design via optimality criteria. Dordrecht: Kluwer.CrossRefGoogle Scholar
  58. Rozvany, G. I. N. (1992). Optimal layout theory: analytical solutions for elastic structures with several deflection constraints and load conditions. Structural and Multidisciplinary Optimization, 4, 247–249.CrossRefGoogle Scholar
  59. Rozvany, G. I. N., & Birker, T. (1994). On singular topologies in exact layout optimization. Structural Optimization, 8, 228–235.CrossRefGoogle Scholar
  60. Rozvany, G. I. N., & Hill, R. H. (1978). Optimal plastic design: superposition principles and bounds on the minimum cost. Computer Methods in Applied Mechanics and Engineering, 13, 151–173.CrossRefGoogle Scholar
  61. Rozvany, G. I. N., Zhou, M., & Birker, T. (1993). Why multi-load topology designs based on orthogonal microstructures are in general non-optimal. Structural Optimization, 6, 200–204.CrossRefGoogle Scholar
  62. Rozvany, G. I. N., Birker, T., & Lewiński, T. (1994). Some unexpected properties of exact least-weight plane truss layouts with displacement constraints for several alternate loads. Structural Optimization, 7, 76–86.CrossRefGoogle Scholar
  63. Rozvany, G. I. N., Bendsøe, M. P., & Kirsch, U. (1995). Layout optimization of structures. Applied Mechanics Reviews ASME, 48, 41–119.CrossRefGoogle Scholar
  64. Rozvany, G. I. N., Pomezanski, V., & Sokół, T. (2014a). Exact compliance-based multi-load exact truss topology optimization revisited - also background material for an authors’ reply to a discussion by Logo. Structural and Multidisciplinary Optimization, 50, 193–205.MathSciNetCrossRefGoogle Scholar
  65. Rozvany, G. I. N., Pomezanski, V., Sokół, T., & Pinter, E. (2014b). Major advances in exact structural topology optimization: stress and displacement based multi-load design. In H. Rodrigues, J. Herskovits, C. M. Soares, J. M. Guedes, A. Araujo, J. Folgado, F. Moleiro, & J. A. Madeira (Eds.), Engineering Optimization IV (pp. 835–840). Boca Raton: CRC Press.CrossRefGoogle Scholar
  66. Rozvany, G. I. N., Sokół, T., & Pomezanski, V. (2014c). Fundamentals of exact multi-load topology optimization - stress-based least-volume trusses (generalized Michell structures) - Part I: Plastic design. Structural and Multidisciplinary Optimization, 50, 1051–1078.MathSciNetCrossRefGoogle Scholar
  67. Schmidt, L. C. (1962). Minimum weight layouts of elastic, statically determinate, triangulated frames under alternative load systems. Journal of the Mechanics and Physics of Solids, 10, 139–149.CrossRefGoogle Scholar
  68. Sokół, T. (2014). Multi-load truss topology optimization using the adaptive ground structure approach. In T. Łodygowski, J. Rakowski, & P. Litewka (Eds.), Recent advances in computational mechanics (Ch. 2) (pp. 9–16). London: CRC Press.CrossRefGoogle Scholar
  69. Sokół, T. (2016). A new adaptive ground structure method for multi-load spatial Michell structures. In M. Kleiber, T. Burczyński, K. Wilde, J. Górski, K. Winkelmann, & L. Smakosz (Eds.), Advances in mechanics: Theoretical, computational and interdisciplinary issues (pp. 525–528). Leiden: CRC Press.CrossRefGoogle Scholar
  70. Sokół, T. (2018). On the numerical approximation of Michell trusses and the improved ground structure method. In: A. Schumacher, T. Vietor, S. Fiebig, K. U. Bletzinger, K. Maute (Eds.), Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Cham: Springer.Google Scholar
  71. Sokół, T., & Rozvany, G. I. N. (2013). On the adaptive ground structure approach for multi-load truss topology optimization. In: 10th World Congress on Structural and Multidisciplinary Optimization, WCSMO-10, Orlando, Florida, USA, May 19–24 (Vol. 5428) (full text on http://www2.mae.ufl.edu/mdo/papers/5428.pdf).
  72. Sokół, T., & Rozvany, G. I. N. (2015). On the numerical optimization of multi-load spatial Michell trusses using a new adaptive ground structure approach. In: World Congress on Structural and Multidisciplinary Optimization, WCSMO-11 (Vol. 1181) (full text available on http://www.aeromech.usyd.edu.au/WCSMO2015/papers/1181_paper.pdf).
  73. Spillers, W. R., & Lev, O. (1971). Design for two loading conditions. International Journal of Solids and Structures, 7, 1261–1267.CrossRefGoogle Scholar
  74. Sved, G. (1954). The minimum weight of certain redundant structures. Australian Journal of Applied Science, 5, 1–8.zbMATHGoogle Scholar
  75. Sved, G., & Ginos, Z. (1968). Structural optimization under multiple loading. International Journal of Mechanical Sciences, 10, 803–805.CrossRefGoogle Scholar
  76. Walpole, L. J. (1984). Fourth-rank tensors of the thirty-two crystal classes: Multiplication tables. Proceedings of the Royal Society of London. A, 391, 149–179.MathSciNetCrossRefGoogle Scholar
  77. Werner, R. (2000). Free material optimization. Mathematical analysis and numerical solution. Ph.D. thesis, Institute of Applied Mathematics II, University of Erlangen-Nuerenberg, p. 147.Google Scholar
  78. Zohdi, T. I. (2003). Constrained inverse formulations in random material design. Computer Methods in Applied Mechanics and Engineering, 192, 3179–3194.CrossRefGoogle Scholar
  79. Zowe, J., Kočvara, M., & Bendsøe, M. (1997). Free material optimization via mathematical programming. Mathematical Programming, 79, 445–466.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tomasz Lewiński
    • 1
  • Tomasz Sokół
    • 2
  • Cezary Graczykowski
    • 3
  1. 1.Faculty of Civil EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Faculty of Civil EngineeringWarsaw University of TechnologyWarsawPoland
  3. 3.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations