Theory of Michell Structures. Single Load Case

  • Tomasz Lewiński
  • Tomasz Sokół
  • Cezary Graczykowski


The Michell structures are solutions to the problems of optimum design put forward and discussed in Sects.  2.1 and  2.2 provided that the nodes of the trusses may be placed at arbitrary point of the design domain being a subdomain of the plane or of the Euclidean space. The present chapter introduces the reader to the main topic of the book.


  1. Allaire, G. (2002). Shape optimization by the homogenization method. New York: Springer.CrossRefGoogle Scholar
  2. Bouchitté, G., & Buttazzo, G. (2001). Characterization of optimal shapes and masses through Monge-Kantorovich equation. Journal of the European Mathematical Society, 3, 139–168.MathSciNetCrossRefGoogle Scholar
  3. Bouchitté, G., Gangbo, W., & Seppecher, P. (2008). Michell trusses and lines of principal action. Mathematical Models and Methods in Applied Sciences, 18, 1571–1603.MathSciNetCrossRefGoogle Scholar
  4. Chan, A. S. L. (1960). The design of Michell optimum structures. Cranfield: The College of Aeronautics (Report 142).Google Scholar
  5. Cherkaev, A. V. (2000). Variational methods for structural optimization. New York: Springer.CrossRefGoogle Scholar
  6. Cherry, T. M. (1962). Anthony George Maldon Michell: 1870–1959. Biographical Memoirs of Fellows of the Royal Society (pp. 90–103).
  7. Cox, H. L. (1965). The design of structures of least weight. Oxford: Pergamon Press.Google Scholar
  8. Čyras, A. (1972). Optimization theory of perfectly locking bodies. Archives of Mechanics, 24, 203–210.MathSciNetzbMATHGoogle Scholar
  9. Demengel, F., & Suquet, P. (1986). On locking materials. Acta Applicandae Mathematicae, 6, 185–211.MathSciNetCrossRefGoogle Scholar
  10. Desmorat, B., & Duvaut, G. (2003). Compliance optimization with nonlinear elastic materials. Application to constitutive laws dissymmetric in tension-compression. European Journal of Mechanics A/Solids, 22, 179–192.MathSciNetCrossRefGoogle Scholar
  11. Hemp, W. S. (1958). Theory of structural design. The College of Aeronautics, Cranfield. Report no 115.Google Scholar
  12. Hemp, W. S. (1973). Optimum structures. Oxford: Clarendon Press.Google Scholar
  13. Hu, T.-C., & Shield, T. T. (1961). Minimum weight design of discs. Zeitschrift für Angewandte Mathematik und Physik, 12, 414–433.CrossRefGoogle Scholar
  14. Lagache, J.-M. (1981). Developments in Michell theory, pp. 4–9 to 4–16. In A. Atrek & R. H. Gallagher (Eds.), Proceedings of the International Symposium on Optimal Structural design. The 11th ONR Naval Structural Mechanics Symposium, 19–22 October 1981.Google Scholar
  15. Lewiński, T., & Sokół, T. (2014). On basic properties of Michell’s structures. In G. I. N. Rozvany & T. Lewiński (Eds.), Topology optimization in structural and continuum mechanics (Vol. 549). CISM international centre for mechanical sciences. Courses and lectures. Wien: Springer.CrossRefGoogle Scholar
  16. Lewiński, T., & Telega, J. J. (2000). Plates, laminates and shells. Asymptotic analysis and homogenization. Singapore, New Jersey, London, Hong Kong: World Scientific.Google Scholar
  17. Maxwell, C. (1870). On reciprocal figures, frames and diagrams of forces. Scientific Papers II, 26, 161–207.Google Scholar
  18. Michell, A. G. M. (1899). Elastic stability of long beams under transverse forces. Philosophical Magazine. Series 5, 48(292), 298–309.CrossRefGoogle Scholar
  19. Michell, A. G. M. (1904). The limits of economy of material in frame structures. Philosophical Magazine. Series 6, 8(47), 589–597.CrossRefGoogle Scholar
  20. Naghdi, P. M. (1963). Foundation of elastic shell theory. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (pp. 2–90). Amsterdam: North Holland.Google Scholar
  21. Ostoja-Starzewski, M. (2001). Michell trusses in the presence of microscale material randomness: limitation of optimality. Proceedings of the Royal Society of London, 457, 1787–1797.CrossRefGoogle Scholar
  22. Prager, W., & Shield, R. T. (1967). A general theory of optimal plastic design. Journal of Applied Mechanics, Transactions ASME, 34, 184–186.CrossRefGoogle Scholar
  23. Rockafellar, R. T. (1970). Convex analysis. New Jersey: Princeton University Press.CrossRefGoogle Scholar
  24. Rozvany, G. I. N. (1976). Optimal design of flexural systems. London: Pergamon Press.Google Scholar
  25. Rozvany, G. I. N. (1989). Structural design via optimality criteria. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  26. Sigmund, O., Aage, N., & Andreassen, E. (2016). On the (non-) optimality of Michell’s structures. Structural and Multidisciplinary Optimization, 54, 361–373.MathSciNetCrossRefGoogle Scholar
  27. Stavroulakis, G. E., & Tzaferopoulos, M. Ap. (1994). A variational inequality approach to optimal plastic design of structures via the Prager-Rozvany theory. Structural Optimization, 7, 160–169.CrossRefGoogle Scholar
  28. Strang, G., & Kohn, R. V. (1983). Hencky-Prandtl nets and constrained Michell trusses. Computer Methods in Applied Mechanics and Engineering, 36, 207–222.MathSciNetCrossRefGoogle Scholar
  29. Telega, J. J., & Jemioło, S. (1998). Macroscopic behaviour of locking materials with microstructure. Part I. Primal and dual locking potential. Relaxation. Bulletin of the Polish Academy of Sciences, 46, 265–276.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tomasz Lewiński
    • 1
  • Tomasz Sokół
    • 2
  • Cezary Graczykowski
    • 3
  1. 1.Faculty of Civil EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Faculty of Civil EngineeringWarsaw University of TechnologyWarsawPoland
  3. 3.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations