Skip to main content

Theory of Michell Structures. Single Load Case

  • Chapter
  • First Online:
Michell Structures

Abstract

The Michell structures are solutions to the problems of optimum design put forward and discussed in Sects. 2.1 and 2.2 provided that the nodes of the trusses may be placed at arbitrary point of the design domain being a subdomain of the plane or of the Euclidean space. The present chapter introduces the reader to the main topic of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaire, G. (2002). Shape optimization by the homogenization method. New York: Springer.

    Book  Google Scholar 

  • Bouchitté, G., & Buttazzo, G. (2001). Characterization of optimal shapes and masses through Monge-Kantorovich equation. Journal of the European Mathematical Society, 3, 139–168.

    Article  MathSciNet  Google Scholar 

  • Bouchitté, G., Gangbo, W., & Seppecher, P. (2008). Michell trusses and lines of principal action. Mathematical Models and Methods in Applied Sciences, 18, 1571–1603.

    Article  MathSciNet  Google Scholar 

  • Chan, A. S. L. (1960). The design of Michell optimum structures. Cranfield: The College of Aeronautics (Report 142).

    Google Scholar 

  • Cherkaev, A. V. (2000). Variational methods for structural optimization. New York: Springer.

    Book  Google Scholar 

  • Cherry, T. M. (1962). Anthony George Maldon Michell: 1870–1959. Biographical Memoirs of Fellows of the Royal Society (pp. 90–103). www.jstor.org.

  • Cox, H. L. (1965). The design of structures of least weight. Oxford: Pergamon Press.

    Google Scholar 

  • Čyras, A. (1972). Optimization theory of perfectly locking bodies. Archives of Mechanics, 24, 203–210.

    MathSciNet  MATH  Google Scholar 

  • Demengel, F., & Suquet, P. (1986). On locking materials. Acta Applicandae Mathematicae, 6, 185–211.

    Article  MathSciNet  Google Scholar 

  • Desmorat, B., & Duvaut, G. (2003). Compliance optimization with nonlinear elastic materials. Application to constitutive laws dissymmetric in tension-compression. European Journal of Mechanics A/Solids, 22, 179–192.

    Article  MathSciNet  Google Scholar 

  • Hemp, W. S. (1958). Theory of structural design. The College of Aeronautics, Cranfield. Report no 115.

    Google Scholar 

  • Hemp, W. S. (1973). Optimum structures. Oxford: Clarendon Press.

    Google Scholar 

  • Hu, T.-C., & Shield, T. T. (1961). Minimum weight design of discs. Zeitschrift für Angewandte Mathematik und Physik, 12, 414–433.

    Article  Google Scholar 

  • Lagache, J.-M. (1981). Developments in Michell theory, pp. 4–9 to 4–16. In A. Atrek & R. H. Gallagher (Eds.), Proceedings of the International Symposium on Optimal Structural design. The 11th ONR Naval Structural Mechanics Symposium, 19–22 October 1981.

    Google Scholar 

  • Lewiński, T., & Sokół, T. (2014). On basic properties of Michell’s structures. In G. I. N. Rozvany & T. Lewiński (Eds.), Topology optimization in structural and continuum mechanics (Vol. 549). CISM international centre for mechanical sciences. Courses and lectures. Wien: Springer.

    Chapter  Google Scholar 

  • Lewiński, T., & Telega, J. J. (2000). Plates, laminates and shells. Asymptotic analysis and homogenization. Singapore, New Jersey, London, Hong Kong: World Scientific.

    Google Scholar 

  • Maxwell, C. (1870). On reciprocal figures, frames and diagrams of forces. Scientific Papers II, 26, 161–207.

    Google Scholar 

  • Michell, A. G. M. (1899). Elastic stability of long beams under transverse forces. Philosophical Magazine. Series 5, 48(292), 298–309.

    Article  Google Scholar 

  • Michell, A. G. M. (1904). The limits of economy of material in frame structures. Philosophical Magazine. Series 6, 8(47), 589–597.

    Article  Google Scholar 

  • Naghdi, P. M. (1963). Foundation of elastic shell theory. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (pp. 2–90). Amsterdam: North Holland.

    Google Scholar 

  • Ostoja-Starzewski, M. (2001). Michell trusses in the presence of microscale material randomness: limitation of optimality. Proceedings of the Royal Society of London, 457, 1787–1797.

    Article  Google Scholar 

  • Prager, W., & Shield, R. T. (1967). A general theory of optimal plastic design. Journal of Applied Mechanics, Transactions ASME, 34, 184–186.

    Article  Google Scholar 

  • Rockafellar, R. T. (1970). Convex analysis. New Jersey: Princeton University Press.

    Book  Google Scholar 

  • Rozvany, G. I. N. (1976). Optimal design of flexural systems. London: Pergamon Press.

    Google Scholar 

  • Rozvany, G. I. N. (1989). Structural design via optimality criteria. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Sigmund, O., Aage, N., & Andreassen, E. (2016). On the (non-) optimality of Michell’s structures. Structural and Multidisciplinary Optimization, 54, 361–373.

    Article  MathSciNet  Google Scholar 

  • Stavroulakis, G. E., & Tzaferopoulos, M. Ap. (1994). A variational inequality approach to optimal plastic design of structures via the Prager-Rozvany theory. Structural Optimization, 7, 160–169.

    Article  Google Scholar 

  • Strang, G., & Kohn, R. V. (1983). Hencky-Prandtl nets and constrained Michell trusses. Computer Methods in Applied Mechanics and Engineering, 36, 207–222.

    Article  MathSciNet  Google Scholar 

  • Telega, J. J., & Jemioło, S. (1998). Macroscopic behaviour of locking materials with microstructure. Part I. Primal and dual locking potential. Relaxation. Bulletin of the Polish Academy of Sciences, 46, 265–276.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewiński, T., Sokół, T., Graczykowski, C. (2019). Theory of Michell Structures. Single Load Case. In: Michell Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-95180-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95180-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95179-9

  • Online ISBN: 978-3-319-95180-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics