Skip to main content

Selected Problems of Statics

  • Chapter
  • First Online:
Michell Structures

Abstract

In its original formulation, Michell’s (Philosophical Magazine, Series 6 8(47):589–597, 1904) problem reads as follows: find the framework of least volume in which state of stress \(\varvec{\sigma }\) satisfies the conditions \(-\sigma _C \le \min \lambda _i(\varvec{\sigma })\le \max \lambda _i (\varvec{\sigma }) \le \sigma _T\) and which a given load transmits to a given segment of the boundary of the design domain; \(\lambda _i (\varvec{A})\) represents ith eigenvalue of a symmetric matrix \(\varvec{A}\). The solution to this problem depends essentially on the ratio \(\kappa =\frac{\sigma _T}{\sigma _C}\) but does not depend on other material data. Therefore, this problem belongs to the class called the plastic optimum design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The non-typical notation T for the axial force is taken from Hemp (1973).

References

  • Achtziger, W. (1996). Topology optimization of discrete structures: An introductory course using convex and nonsmooth analysis. Advanced School, International Centre for Mechanical Sciences (CISM), Udine, 24–28 June 1996.

    Google Scholar 

  • Achtziger, W. (1997). Topology optimization of discrete structures: An introduction in view of computational and nonsmooth aspects. In G. I. N. Rozvany (Ed.), Topology optimization in structural mechanics (Vol. 374, pp. 57–100). CISM courses and lectures. Wien: Springer.

    Chapter  Google Scholar 

  • Argyris, J. H., & Mlejnek, H.-P. (1986). Die Methode der Finiten Elementen in der elementaren Strukturmechanik, Band I, Verschiebungsmethode in der Statik, Friedr. Vieweg u.Sohn, Braunschweig/Wiesbaden.

    Google Scholar 

  • Arutyunyan, N. Kh., & Abramyan, B. L. (1963). Torsion of elastic bodies. Moscow: Fizmatgiz (in Russian).

    Google Scholar 

  • Błaszkowiak, S., & Ka̧czkowski, Z. (1966). Iterative methods in structural analysis. Warsaw-London: Pergamon Press and Polish Scientific Publishers.

    Google Scholar 

  • Borkowski, A. (1985). Statical analysis of bar systems in the elastic and plastic range. Warszawa-Poznań (in Polish): Polish Scientific Publishers.

    Google Scholar 

  • Chróścielewski, J., Makowski, J., & Pietraszkiewicz, W. (2004). Statics and dynamics of multi-folded shells. The nonlinear theory and the finite element method. IPPT PAN, Warsaw (in Polish).

    Google Scholar 

  • Ciarlet, Ph. (1997). Mathematical elasticity. Vol. II: Elastic plates. Amsterdam: Elsevier.

    Google Scholar 

  • Ciarlet, Ph. (1998). Introduction to linear shell theory. Paris: Gauthier-Villars.

    Google Scholar 

  • Ciarlet, Ph., & Sanchez-Palencia, E. (1996). An existence and uniqueness theorem for the two-dimensional linear membrane shell equations. Journal de Mathématiques Pures et Appliquées, 75, 51–67.

    Google Scholar 

  • Clebsch, A. (1862). Theorie der Elastizität fester Korper. Leipzig: Teubner.

    Google Scholar 

  • Flügge, W. (1960). Stresses in shells. Berlin: Springer.

    MATH  Google Scholar 

  • Gol’denveizer, A. L. (1976). Theory of elastic thin shells (2nd ed.). Moscow: Nauka (in Russian).

    Google Scholar 

  • Hartmann, F. (1985). The mathematical foundation of structural mechanics. Berlin: Springer.

    Book  Google Scholar 

  • Hemp, W. S. (1973). Optimum structures. Oxford: Clarendon Press.

    Google Scholar 

  • Kirchhoff, G. (1876). Vorlesungen uber mathematische Physik. Bd 1, Mechanik, Teubner. Leipzig.

    Google Scholar 

  • König, A. (1987). Shakedown of elastic-plastic structures. Warsaw: Elsevier.

    Google Scholar 

  • Krużelecki, J., & Życzkowski, M. (1985). Optimal structural design of shells - a survey. SM Archives, 10, 101–170.

    MATH  Google Scholar 

  • Lewiński, T. (2001). On algebraic equations of elastic trusses, frames and grillages. Journal of Theoretical and Applied Mechanics, 39, 307–322.

    MATH  Google Scholar 

  • Lewiński, T. (2004). Michell structures formed on surfaces of revolution. Structural and Multidisciplinary Optimization, 28(2004), 20–30.

    Article  MathSciNet  Google Scholar 

  • Lewiński, T., & Telega, J. J. (2000). Plates, laminates and shells. Asymptotic analysis and homogenization (Vol. 52). Series on advances in mathematics for applied sciences. Singapore: World Scientific Publishing Co.

    Google Scholar 

  • Love, A. E. H. (1888). The small free vibrations and deformation of a thin elastic shell. Philosophical Transactions of the Royal Society of London A, 179, 491–546.

    Article  Google Scholar 

  • Martin, F. (1949). Die Membran-Kugelschale unter Einzellasten. Ingenieur-Archiv, 17, 167–186.

    Article  MathSciNet  Google Scholar 

  • Mazurkiewicz, Z. E. (2004). Thin elastic shells. Linear theory. Warszawa (in Polish): Oficyna Wydawnicza PW.

    Google Scholar 

  • Michell, A. G. M. (1904). The limits of economy of material in frame structures. Philosophical Magazine. Series 6, 8(47), 589–597.

    Article  Google Scholar 

  • Naghdi, P. M. (1963). Foundation of elastic shell theory. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (pp. 2–90). Amsterdam: North Holland.

    Google Scholar 

  • Nečas, J., & Hlávaček, I. (1981). Mathematical theory of elastic and elasto-plastic bodies: An introduction. Rotterdam: Elsevier.

    Chapter  Google Scholar 

  • Novozhilov, V. V. (1970). Thin shell theory. Groningen: Walters-Nordhoff.

    MATH  Google Scholar 

  • Rozvany, G. I. N. (1976). Optimal design of flexural systems. London: Pergamon Press.

    Google Scholar 

  • Save, M., & Prager, W. (Eds.). (1985). Structural optimization. Vol. 1. Optimality criteria. New York and London: Plenum Press.

    Google Scholar 

  • Strang, G. (1988). A framework for equilibrium equations. SIAM Review, 30, 283–297.

    Article  MathSciNet  Google Scholar 

  • Timoshenko, S. P. (1953). History of strength of materials. New York: Mc Graw Hill Book Co.

    Google Scholar 

  • Vekua, I. N. (1982). Some general methods of constructing selected variants of the theories of shells. Moscow (in Russian): Nauka.

    Google Scholar 

  • Vlasov, V. Z. (1949). General theory of shells and its applications in engineering. Moscow-Leningrad (in Russian): Gostekhizdat.

    Google Scholar 

  • Yosida, K. (1980). Functional analysis. Berlin: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewiński, T., Sokół, T., Graczykowski, C. (2019). Selected Problems of Statics. In: Michell Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-95180-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95180-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95179-9

  • Online ISBN: 978-3-319-95180-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics