Skip to main content

Flood Susceptibility Evaluation on Ephemeral Streams of Southern Italy: A Case Study of Lama Balice

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

In the proposed work areas exposed to flood risk were evaluated in a particular context of karst ephemeral streams located in Puglia region (Southern Italy). The case study of Lama Balice, characterized by a natural geomorphologic structure, was tested for the application of a DTM-based approach, aimed to the rapid identification and mapping of flood risk. The inundated areas, obtained with a 2D hydraulic model, following design rainfall events characterized by different return periods, were used as reference maps for the selection of the most appropriate geomorphological descriptor exploiting the binary classifiers test. The performance of the adopted procedure was tested by validating the selected geomorphological descriptors on a different area with respect to that used for calibration, in order to estimate the discrepancy between DTM-based flood maps and those obtained by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Floods Directive 2007/60/EC on the assessment and management of flood risks entered into force on 26 November 2007

    Google Scholar 

  2. Feldman, A.D.: Hydrologic Engineering Center (U.S.), Hydrologic Modeling System HEC-HMS, US Army Corps of Engineers, Hydrologic Engineering Center (2000)

    Google Scholar 

  3. Rigon, R., Bertoldi, G., Over, T.M.: GEOtop: a distributed hydrological model with coupled water and energy budgets. J. Hydrom. 7, 371–388 (2006). https://doi.org/10.1175/JHM497.1

    Article  Google Scholar 

  4. Fiorentino, M., Gioia, A., Iacobellis, V., Manfreda, S.: Analysis on flood generation processes by means of a continuous simulation model. Adv. Geosci. 7, 231–236 (2006). www.adv-geosci.net/7/231/2006/. https://doi.org/10.5194/adgeo-7-231-2006. ISSN 1680-7340

    Article  Google Scholar 

  5. Merz, R., Blöschl, G.: Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resour. Res. 44(8) (2008). http://dx.doi.org/101029/2007WR006744

  6. Fiorentino, M., Gioia, A., Iacobellis, V., Manfreda, S.: Regional analysis of runoff thresholds behaviour in Southern Italy based on theoretically derived distributions. Adv. Geosci. 26, 139–144 (2011). www.adv-geosci.net/26/139/2011/. https://doi.org/10.5194/adgeo-26-139-2011. ISSN 1680-7340

    Article  Google Scholar 

  7. Beven, K.: Rainfall-Runoff Modelling the Primer, 2nd edn. Wiley-Blackwell, Chichester (2012)

    Book  Google Scholar 

  8. Gioia, A., Manfreda, S., Iacobellis, V., Fiorentino, M.: Performance of a theoretical model for the description of water balance and runoff dynamics in Southern Italy. J. Hydrol. Eng. 19(6), 1113–1123 (2014). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000879

    Article  Google Scholar 

  9. Di Modugno, M., Gioia, A., Gorgoglione, A., Iacobellis, V., la Forgia, G., Piccinni, A.F., Ranieri, E.: Build-Up/wash-off monitoring and assessment for sustainable management of first flush in an urban area. Sustainability 7, 5050–5070 (2015)

    Article  Google Scholar 

  10. Gioia, A., Iacobellis, V., Manfreda, S., Fiorentino, M.: Comparison of different methods describing the peak runoff contributing areas during floods. Hydrol. Process. 31(11), 2041–2049 (2017)

    Article  Google Scholar 

  11. Mizyed, N.R., Loftis, J.C., Fontane, D.G.: Operation of large multireservoirs ystemsu singo ptimal-controlt heory. J. Water Resour. Plan. Manag. 118(4), 371–387 (1992)

    Article  Google Scholar 

  12. Crawley, P.D., Dandy, G.C.: Optimal operation of multiple reservoir system. J. Water Resour. Plan. Manag. 119(1), 1–17 (1993)

    Article  Google Scholar 

  13. Oliveira, R., Loucks, D.P.: Operating rules for multireservoir systems. Water Resour. Res. 33(4), 839–852 (1997)

    Article  Google Scholar 

  14. Gioia, A.: Reservoir routing on double-peak design flood. Water 8, 553 (2016)

    Article  Google Scholar 

  15. Sordo-Ward, A., Gabriel-Martin, I., Bianucci, P., Garrote, L.: A parametric flood control method for dams with gate-controlled spillways. Water 9, 237 (2017). https://doi.org/10.3390/w904023

    Article  Google Scholar 

  16. De Wrachien, D., Mambretti, S.: Mathematical models for flood hazard assessment. Int. J. Saf. Secur. Eng. 1(4), 353–362 (2011). https://doi.org/10.2495/SAFE-V1-N4-353-362

    Article  Google Scholar 

  17. Iacobellis, V., Castorani, A., Di Santo, A.R., Gioia, A.: Rationale for flood prediction in karst endorheic areas. J. Arid Environ. 112(10), 98–108 (2015). https://doi.org/10.1016/j.jaridenv.2014.05.018

    Article  Google Scholar 

  18. Bates, P., Anderson, M., Price, D., Hardy, R., Smith, C.: Analysis and development of hydraulic models for floodplain flows. In: Anderson, M.G., Walling, D.E., Bates, P.D. (eds.) Floodplain Processes. Wiley, New York (1996)

    Google Scholar 

  19. Aronica, G., Hankin, B., Beven, K.J.: Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Adv. Water Resour. 22(4), 349–365 (1998)

    Article  Google Scholar 

  20. Jain, S.K., Singh, R.D., Jain, M.K., Lohani, A.K.: Delineation of flood-prone areas using remote sensing techniques. Water Resour. Manag. 19, 333 (2005). https://doi.org/10.1007/s11269-005-3281-5

    Article  Google Scholar 

  21. Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F., Hamilton, S.K.: Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015)

    Article  Google Scholar 

  22. Manfreda, S., Samela, C., Gioia, A., Consoli, G.G., Iacobellis, V., Giuzio, L., Cantisani, A., Sole, A.: Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D Hydraulic models. Nat. Hazards (2015). https://doi.org/10.1007/s11069-015-1869-5

  23. Bates, P.D., Horritt, M.S., Smith, C.N., Mason, D.C.: Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol. Process. 11, 1777–1795 (1997)

    Article  Google Scholar 

  24. Horritt, M.S., Mason, D.C., Luckman, A.J.: Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int. J. Remote Sens. 22(13), 2489–2507 (2001)

    Article  Google Scholar 

  25. Mattia, F., Satalino, G., Balenzano, A., D’Urso, G., Capodici, F., Iacobellis, V., Milella, P., Gioia, A., Rinaldi, M., Ruggieri, S., Dini, L.: Time series of COSMO-SkyMed data for landcover classification and surface parameter retrieval over agricultural sites. In: Proceedings of the IEEE 2012 International Geoscience and Remote Sensing Symposium, pp. 6511–6514 (2012). ISBN 978-1-4673-1159-5

    Google Scholar 

  26. Balenzano, A., Satalino, G., Belmonte, A., D’Urso, G., Capodici, F., Iacobellis, V., Gioia, A., Rinaldi, M., Ruggieri, S., Mattia, F.: On the use of multi-temporal series of COSMO-SkyMed data for landcover classification and surface parameter retrieval over agricultural sites. In: Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, 24–29 July, Vancouver, Canada, pp. 142–145 (2011)

    Google Scholar 

  27. Balenzano, A., Satalino, G., Iacobellis, V., Gioia, A., Manfreda, S., Rinaldi, M., De Vita, P., Miglietta, F., Toscano, P., Annichiarico, G., Mattia, F.: A ground network for SAR-derived soil moisture product calibration, validation and exploitation in southern Italy. In: Proceedings of the IEEE 2014 International Geoscience and Remote Sensing Symposium, IGARSS 2014 (2014)

    Google Scholar 

  28. Tarantino, E., Novelli, A., Laterza, M., Gioia, A.: Testing high spatial resolution WorldView-2 imagery for retrieving the leaf area index. In: Proceedings of the SPIE 9535, Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015) (2015). https://doi.org/10.1117/12.2192561

  29. Trombetta, A., Iacobellis, V., Tarantino, E., Gentile, F.: Calibration of the AquaCrop model for winter wheat using MODIS LAI images. Agric. Water Manag. 164(Part 2), 304–316 (2016)

    Article  Google Scholar 

  30. Olang, L.O., Kundu, P., Bauer, T., Fürst, J.: Analysis of spatio-temporal land cover changes for hydrological impact assessment within the Nyando River Basin of Kenya. Environ. Monit. Assess. 179, 389–401 (2011)

    Article  Google Scholar 

  31. Pattison, I., Lane, S.N.: The link between land-use management and fluvial flood risk: a chaotic conception? Prog. Phys. Geogr. 36, 72–92 (2011)

    Article  Google Scholar 

  32. Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space-time LAI variability in Northern Puglia (Italy) from SPOT VGT data. Environ. Monit. Assess. 187, 434 (2015). https://doi.org/10.1007/s10661-015-4603-6

    Article  Google Scholar 

  33. Caprioli, M., Tarantino, E.: Identification of land cover alterations in the Alta Murgia National Park (Italy) with VHR satellite imagery. Int. J. Sustain. Dev. Plan. 1(3), 261–270 (2006)

    Article  Google Scholar 

  34. Crocetto, N., Tarantino, E.: A class-oriented strategy for features extraction from multidate ASTER imagery. Remote Sens. 1(4), 1171–1189 (2009)

    Article  Google Scholar 

  35. Saradjian, M.R., Hosseini, M.: Soil moisture estimation by using multipolarization SAR image. Adv. Space Res. 48(2), 278–286 (2011)

    Article  Google Scholar 

  36. Gioia, A., Iacobellis, V., Manfreda, S., Fiorentino, M.: Influence of infiltration and soil storage capacity on the skewness of the annual maximum flood peaks in a theoretically derived distribution. Hydrol. Earth Syst. Sci. 16, 937–951 (2012). https://doi.org/10.5194/hess-16-937-2012

    Article  Google Scholar 

  37. Iacobellis, V., Gioia, A., Milella, P., Satalino, G., Balenzano, A., Mattia, F.: Inter-comparison of hydrological model simulations with time series of SAR-derived soil moisture maps. Eur. J. Remote Sens. 46(1), 739–757 (2013)

    Article  Google Scholar 

  38. Nardi, F., Vivoni, E.R., Grimaldi, S.: Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resour. Res. 42(9), W09409 (2006)

    Article  Google Scholar 

  39. Marks, K., Bates, P.D.: Integration of high resolution topographic data with floodplain flow models. Hydrol. Process. 14, 2109–2122 (2000)

    Article  Google Scholar 

  40. Dodov, B.A., Foufoula-Georgiou, E.: Floodplain morphometry extraction from a high-resolution digital elevation model: a simple algorithm for regional analysis studies. Geosci. Remote Sens. Lett. IEEE 3(3), 410–413 (2006). https://doi.org/10.1109/LGRS.2006.874161

    Article  Google Scholar 

  41. De Giorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A.C.: Classifiers for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. 470–471, 302–315 (2012)

    Article  Google Scholar 

  42. De Risi, R., Jalayer, F., De Paola, F., Giugni, M.: Probabilistic delineation of flood- -prone areas based on a digital elevation model and the extent of historical flooding: the case of Ouagadougou. Boletín Geológico Minero 125, 329–340 (2014)

    Google Scholar 

  43. Totaro, V., Gioia, A., Novelli, A., Caradonna, G.: The use of geomorphological descriptors and landsat-8 spectral indices data for flood areas evaluation: a case study of Lato river basin. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 30–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_3

    Chapter  Google Scholar 

  44. Milone, F., Camarda, D.: Modeling knowledge in environmental analysis: a new approach to soundscape ecology. Sustainability 9, 564 (2017). https://doi.org/10.3390/su9040564

    Article  Google Scholar 

  45. US Army Corps of Hydraulic Engineers: HEC-2 User’s Manual (1985). http://www.hec.usace.army.mil/publications/pubs_distrib/hec/hec2.htmlUSDA-SCS. National Engineering Handbook, Sec, 4 – Hydrology. Washington, D.C. (2001)

  46. O’Brien, J.S., Julien, P.Y., Fullerton, W.T.: Two-dimensional water flood and mudflow simulation. J. Hydraul. Eng. 119(2), 244–261 (1993). https://doi.org/10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  47. USDA-SCS: National Engineering Handbook, Sec, 4 - Hydrology, Washington, D.C. (1985)

    Google Scholar 

  48. Claps, P., Copertino, V.A., Ermini, R., Fiorentino, M.: Analisi regionale dei massimi annuali delle precipitazioni di diversa durata. In: “Valutazione delle piene in Puglia” a cura di Copertino, V., Fiorentino, M., CNR-GNDCI, Potenza (1992). (in Italian)

    Google Scholar 

  49. Slatton, K.C., Carter, W.E., Shrestha, R.L., Dietrich, W.E.: Airborne laser swath mapping: achieving the resolution and accuracy required for geosurficial research. Geophys. Res. Lett. 34, L23S10 (2007). https://doi.org/10.1029/2007gl031939

  50. Samela, C., Manfreda, S., Paola, F.D., Giugni, M., Sole, A., Fiorentino, M.: DEM- based approaches for the delineation of flood-prone areas in an ungauged basin in Africa. J. Hydrol. Eng. (2015). http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001272

  51. Samela, C., Troy, T.J., Manfreda, S.: Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour. 102, 13–28 (2017). https://doi.org/10.1016/j.advwatres.2017.01.007

    Article  Google Scholar 

  52. Manfreda, S., Di Leo, M., Sole, A.: Detection of flood prone areas using digital elevation models. J. Hydrol. Eng. 16(10), 781–790 (2011). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000367

    Article  Google Scholar 

  53. Kirkby, M.J.: Hydrograph modelling strategies. In: Peel, R., Chisholm, R., Haggett, P. (eds.) Processes in Physical and Human Geography, pp. 69–90. Heinemann, Oxford (1975)

    Google Scholar 

  54. Hjerdt, K.N., McDonnell, J.J., Seibert, J., Rodhe, A.: A new topographic index to quantify downslope controls on local drainage. Water Resour. Res. 40, W05602 (2004)

    Article  Google Scholar 

  55. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Totaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gioia, A., Totaro, V., Bonelli, R., Esposito, A.A.M.G., Balacco, G., Iacobellis, V. (2018). Flood Susceptibility Evaluation on Ephemeral Streams of Southern Italy: A Case Study of Lama Balice. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10964. Springer, Cham. https://doi.org/10.1007/978-3-319-95174-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95174-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95173-7

  • Online ISBN: 978-3-319-95174-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics