Skip to main content

Low-Altitude UAV-Borne Remote Sensing in Dunes Environment: Shoreline Monitoring and Coastal Resilience

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

UAV systems, fitted with either active or passive surveying sensors, can provide land-related measures and quantitative information with low costs and high resolution in both space and time. Such surveying systems can be quite valuable in defining geometrical and descriptive parameters in coastal systems, especially dune ecosystems. The present work is based on a survey of the dune system at the mouth of the Fiume Morto Nuovo in the San Rossore Estate (Pisa) and focuses on comparing LiDAR with UAV- and airplane-borne photogrammetry, as well as the respective 2D and 3D cartographic output, in order to assess topography changes along a stretch of coastline and to check their possible use in defining some ecological resilience features on coastal dune systems. Processing of survey data generates a Digital Surface Model (DSM) or Digital Terrain Model (DTM) and an orthophotograph, checked for accuracy and image resolution. Comparison of these products against those available in public access cartographical databases highlights differences and respective strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faturechi, R., Miller-Hooks, E.: Measuring the performance of transportation infrastructure systems in disasters: a comprehensive review. J. infrastruct. syst., 21(1), article no. 04014025 (2015). https://doi.org/10.1061/(asce)is.1943-555x.0000212

    Article  Google Scholar 

  2. Supporto tecnico-scientifico per il Ministero dell’Ambiente e della Tutela del Territorio e del Mare (MATTM): Piano Nazionale di Adattamento ai Cambiamenti Climatici (2017). http://www.minambiente.it/sites/default/files/archivio_immagini/adattamenti_climatici/documento_pnacc_luglio_2017.pdf. Accessed 27 Feb 2018

  3. UNISDR (United Nations International Strategy for Risk Reduction): UNISDR terminology on Disaster Risk Reduction (2009). https://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf. Accessed 27 Feb 2018

  4. Hagelsteen M., Becker P.: A great babylonian confusion: terminological ambiguity in capacity development for disaster risk reduction in the international community. In: 5th International Disaster and Risk Conference: Integrative Risk Management - The Role of Science, Technology and Practice, IDRC Davos 2014, Code 110967, pp. 295–297 (2014)

    Google Scholar 

  5. Bruneau, M., et al.: A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 19(4), 733–752 (2003). https://doi.org/10.1193/1.1623497

    Article  Google Scholar 

  6. Dunkin, L., Reif, M., Altman, S., Swannack, T.: A spatially explicit, multi-criteria decision support model for loggerhead sea turtle nesting habitat suitability: a remote sensing-based approach. Remote Sens., 8(7), article no. 573 (2016). https://doi.org/10.3390/rs8070573

    Article  Google Scholar 

  7. Meng, X., Zhang, X., Silva, R., Li, C., Wang, L.: Impact of high-resolution topographic mapping on beach morphological analyses based on terrestrial LiDAR and object-oriented beach evolution. ISPRS Int. J. Geo-Inf., 6(5), article no. 147 (2017). https://doi.org/10.3390/ijgi6050147

    Article  Google Scholar 

  8. Monge, J.A., Stallins, J.A.: Properties of dune topographic state space for six barrier islands of the U.S. southeastern Atlantic coast. Phys. Geography 37(6), 452–475 (2016). https://doi.org/10.1080/02723646.2016.1230041

    Article  Google Scholar 

  9. Martinez, M.L., Taramelli, A., Silva, R.: Resistance and resilience: facing the multidimensional challenges in coastal areas. J. Coast. Res. 77, 1–6 (2017). https://doi.org/10.2112/si77-001.1

    Article  Google Scholar 

  10. Brooks, S.M., Spencer, T., Christie, E.K.: Storm impacts and shoreline recovery: mechanisms and controls in the southern North Sea. Geomorphology 283(15), 48–60 (2017). https://doi.org/10.1016/j.geomorph.2017.01.007

    Article  Google Scholar 

  11. Park, J., Seager, T.P., Rao, P.S.C., Convertino, M., Linkov, I.: Integrating risk and resilience approaches to catastrophe management in engineering system. Risk Anal. 33(3), 356–367 (2013). https://doi.org/10.1111/j.1539-6924.2012.01885.x

    Article  Google Scholar 

  12. Comes, T., Van de Walle, B.: Measuring disaster resilience: the impact of hurricane sandy on critical infrastructure systems. In: 11th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2014), pp. 195–204 (2014). ISBN 978-069221194-6

    Google Scholar 

  13. Kroon, A., et al.: Application of remote sensing video systems to coastline management problems. Coast. Eng. 54(6–7), 493–505 (2007). https://doi.org/10.1016/j.coastaleng.2007.01.004

    Article  Google Scholar 

  14. Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 81(4), 281–329 (2015). https://doi.org/10.14358/PERS.81.4.281

    Article  Google Scholar 

  15. García-Mora, M.R., Gallego-Fernández, J.B., Williams, A.T., García-Novo, F.: A coastal dune vulnerability classification. a case study of the SW Iberian Peninsula. J. Coast. Res. 17(4), 802–811 (2001). ISSN 07490208

    Google Scholar 

  16. Hedley, J.D., et al.: Remote sensing of coral reefs for monitoring and management: a review. Remote Sens. 8(2), article no. 118 (2016). https://doi.org/10.3390/rs8020118

    Article  Google Scholar 

  17. Aquilino, M., Tarantino, E., Fratino, U.: Multi-temporal land use analysis of AN ephemeral river area using an artificial neural network approach on landsat imagery. ISPRS-Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 1, 167–173 (2013). https://doi.org/10.5194/isprsarchives-xl-5-w3-167-2013

    Article  Google Scholar 

  18. Caroti, G., Piemonte, A., Redini, M.: The elevation net for the saltwater intrusion phenomenon analysis in the coastal plain of Pisa. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XL-5/W3, 99–105 (2013). https://doi.org/10.5194/isprsarchives-xl-5-w3-99-2013

    Article  Google Scholar 

  19. Caroti, G., Camiciottoli, F., Piemonte, A., Redini, M.: The accuracy analysis of Lidar-derived elevation data for the geometric description of cross-sections of a riverbed. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XL-5/W3, 51–57 (2013). https://doi.org/10.5194/isprsarchives-xl-5-w3-51-2013

    Article  Google Scholar 

  20. Caroti, G., Piemonte, A., Redini, M.: Geomatics monitoring and models of the insalination of the freshwaters phenomenon along the Pisan coastline. Appl. Geomat. 7(4), 243–253 (2015). https://doi.org/10.1007/s12518-015-0155-2

    Article  Google Scholar 

  21. Caroti, G., Piemonte, A., Nespoli, R.: UAV-Borne photogrammetry: a low cost 3D surveying methodology for cartographic update. In: International Conference on Advances in Sustainable Construction Materials and Civil Engineering Systems (ASCMCES-17), United Arab Emirates, MATEC Web of Conferences., vol. 120, article no. 09005 (2017). https://doi.org/10.1051/matecconf/201712009005

    Article  Google Scholar 

  22. Cheng, J., Wang, P., Guo, Q.: Measuring beach profiles along a low-wave energy microtidal coast, West-Central Florida, USA. Geosciences 6(4), article no. 44 (2016). https://doi.org/10.3390/geosciences6040044

    Article  Google Scholar 

  23. Cosanti, B., Squeglia, N., Lo Presti, D.C.F.: Analysis of existing levee systems: the Serchio river case. Riv. Ital. di Geotecnica 48(4), 49–67 (2014). ISSN 05571405

    Google Scholar 

  24. Giordan, D., Manconi, A., Remondino, F., Nex, F.: Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomat. Nat. Hazards Risk 8(1), 1–4 (2017). https://doi.org/10.1080/19475705.2017.1315619

    Article  Google Scholar 

  25. Gindraux, S., Boesch, R., Farinotti, D.: Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sens. 9(2), article no. 186 (2017). https://doi.org/10.3390/rs9020186

    Article  Google Scholar 

  26. Martínez-Espejo Zaragoza, I., Caroti, G., Piemonte, A., Riedel, B., Tengen, D., Niemeier, W.: Structure from Motion (SFM) processing of UAV images and combination with terrestrial laser scanning, applied for a 3D-documentation in a hazardous situation. Geomat. Nat. Hazards Risk 8(2), 1492–1504 (2017). https://doi.org/10.1080/19475705.2017.1345796

    Article  Google Scholar 

  27. Caroti, G., Piemonte, A., Pieracci, Y.: UAV-borne photogrammetric survey as USAR firefighter teams support. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_1

    Chapter  Google Scholar 

  28. Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., Gabbianelli, G.: Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments. Remote Sens. 5(12), 6880–6898 (2013). https://doi.org/10.3390/rs5126880

    Article  Google Scholar 

  29. Casella, E., Rovere, A., Pedroncini, A., Stark, C.P., Casella, M., Ferrari, M., Firpo, M.: Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Mar. Lett. 36(2), 151–163 (2016). https://doi.org/10.1007/s00367-016-0435-9

    Article  Google Scholar 

  30. Ballari, D., Orellana, D., Acosta, E., Espinoza, A., Morocho, V.: UAV monitoring for environmental management in Galapagos islands. ISPRS – Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLI-B1, 1105–1111 (2016). https://doi.org/10.5194/isprs-archives-xli-b1-1105-2016

    Article  Google Scholar 

  31. Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A.: Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf. Dyn. 4, 359–389 (2016). https://doi.org/10.5194/esurf-4-359-2016

    Article  Google Scholar 

  32. Papakonstantinou, A., Topouzelis, K., Pavlogeorgatos, G.: Coastline zones identification and 3D coastal mapping using UAV spatial data. ISPRS Int. J. Geo-Inf. 5(6), article no. 75 (2016). https://doi.org/10.3390/ijgi5060075

    Article  Google Scholar 

  33. Long, N., Millescamps, B., Guillot, B., Pouget, F., Bertin, X.: Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sens. 8(5), article no. 387 (2016). https://doi.org/10.3390/rs8050387

    Article  Google Scholar 

  34. Guillot, B., Pouget, F.: UAV application in coastal environment, example of the oleron island for dunes and dikes survey. ISPRS – Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XL-3/W3, 321–326 (2015). https://doi.org/10.5194/isprsarchives-xl-3-w3-321-2015

    Article  Google Scholar 

  35. Li, Z., Xu, D., Guo, X.: Remote sensing of ecosystem health: opportunities, challenges, and future perspectives. Sensors 14(11), 21117–21139 (2014). https://doi.org/10.3390/s141121117

    Article  Google Scholar 

  36. Scheffer, M., Carpenter, S.R., Dakos, V., Van Nes, E.H.: Generic indicators of ecological resilience: inferring the chance of a critical transition. Ann. Rev. Ecol. Evol. Syst. 46, 145–167 (2015). https://doi.org/10.1146/annurev-ecolsys-112414-054242

    Article  Google Scholar 

  37. Clark, A.: Small unmanned aerial systems comparative analysis for the application to coastal erosion monitoring. GeoResJ 13, 175–185 (2017). https://doi.org/10.1016/j.grj.2017.05.001

    Article  Google Scholar 

  38. Delacourt, C., Allemand, P., Jaud, M., Grandjean, P., Deschamps, A., Ammann, J., Cuq, V., Suanez, S.: DRELIO: an unmanned helicopter for imaging coastal areas. J. Coast. Res. 2(56), 1489–1493 (2009). ISSN 0749-0258

    Google Scholar 

  39. Bini, M., Casarosa, N., Ribolini, A.: L’evoluzione diacronica della linea di riva del litorale pisano (1938–2004) sulla base del confronto di immagini aeree georeferenziate [Diachronicevolution of Pisa shore line (1938–2004) based on the comparison of georeferenced airborne images]. Atti Soc. Tosc. Sci. Nat. Mem. Serie A 113, 1–12 (2008)

    Google Scholar 

  40. Caroti, G., Martínez-Espejo Zaragoza, I., Piemonte, A.: Accuracy assessment in structure from motion 3D reconstruction from UAV-born images: the influence of the data processing methods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 103–109 (2015). https://doi.org/10.5194/isprsarchives-XL-1-W4-103-2015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Leica Geosystems for carrying out the photogrammetric survey by means of the Aibotix multirotor.

The research was developed within the project “PRA_2017_60: Sicurezza e resilienza delle infrastrutture civili” financed by the University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yari Pieracci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caroti, G., Piemonte, A., Pieracci, Y. (2018). Low-Altitude UAV-Borne Remote Sensing in Dunes Environment: Shoreline Monitoring and Coastal Resilience. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10964. Springer, Cham. https://doi.org/10.1007/978-3-319-95174-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95174-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95173-7

  • Online ISBN: 978-3-319-95174-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics