Skip to main content

Study of Some Complex Systems by Using Numerical Methods

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

The study deals with the complex systems in Nature by using of some specific numerical methods. First the method of the physical similarity is used for the characterization of the fluids flow regimes. Then, the method of the power laws and some of its multiple uses in Physics and another related fields are analyzed. The method of phenomenological universality, applied to the description of the growth processes is also discussed. The authors results presented in the paper were mainly obtained by computer simulations using the finite difference (FD) method and the classical gradient method (CGM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gukhman, A.A.: Introduction to the Theory of Similarity. Academic Press, New York (1965)

    MATH  Google Scholar 

  2. Lyon, B.N.: Chem. Eng. Progr. 47, 2 (1951)

    Google Scholar 

  3. Petukhov, B.S.: Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv. Heat Transf. 6, 503–564 (1970)

    Article  Google Scholar 

  4. Landau, L., Lifshitz, E.M.: Mecanique des Fluides. MIR, Moscow (1971)

    Google Scholar 

  5. Iordache, D.A.: Selected Works of Numerical Physics. Printech, Bucuresti (2000)

    Google Scholar 

  6. Dobrescu, R., Iordache, D.: Complexity and Information. Romanian Academy Printing House, Bucharest (2010)

    Google Scholar 

  7. Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J. Fluid Mech. 13(1), 82–85 (1962)

    Article  MathSciNet  Google Scholar 

  8. Iordache, D.A., Iordache, V.: On the compatibility of the multi-fractal and similitude descriptions of the fracture parameters relative to the existing experimental data for concrete specimens. In: Proceedings of 1st South-East European Symposium on Interdisciplinary Approaches in Fractal Analysis (IAFA-3), Bucharest, 7–10 May, pp. 55–60 (2003)

    Google Scholar 

  9. Mandelbrot, B.B.: On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72(3), 401–416 (1975)

    Article  Google Scholar 

  10. Witten Jr., T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47(19), 1400 (1981)

    Article  Google Scholar 

  11. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381 (1987)

    Article  Google Scholar 

  12. Petrescu, A.D., Sterian, A.R., Sterian, P.E.: Solitons propagation in optical fibers computer experiments for students training. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4705, pp. 450–461. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74472-6_36

    Chapter  Google Scholar 

  13. Iordache, D.A., Pusca, S., Iordache, V.: Limit laws, frequency power laws and fractal scaling in technological series of ferrimagnetic materials. Rev. Non-conventional Technologies 4, 7–12 (2005)

    Google Scholar 

  14. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil. Trans. Roy. Soc. 115, 513 (1825)

    Article  Google Scholar 

  15. Einstein, A.: Strahlungs-emission und –absorption nach der Quantentheorie. Deutsche Physikalische Gesellchaft 18, 318–323 (1916)

    Google Scholar 

  16. Steel, G.G.: Growth Kinetics of Tumors. Clarendon Press, Oxford (1974)

    Google Scholar 

  17. Weldom, T.E.: Mathematical model in Cancer Research. Adam Hilger, Briston (1988)

    Google Scholar 

  18. Delsanto, P.P., Griffa, M., Condat, C.A., Delsanto, S., Morra, L.: Phys. Rev. Lett. 94(14), 148105 (2005)

    Google Scholar 

  19. Guiot, C., Pugno, N., Delsanto, P.P.: Elasto-mechanical model of tumor-invasion. Appl. Phys. Lett. 89, 1 (2006)

    Article  Google Scholar 

  20. Castorina, P., Delsanto, P.P., Guiot, C.: Phys. Rev. Lett. 96(18), 188701 (2006)

    Article  Google Scholar 

  21. Royama, T.: Analytic Population Dynamics. Chapman & Hall, London (1992)

    Book  Google Scholar 

  22. Brown, J.H., West, G.B. (eds.): Scaling in Biology. Oxford University Press, New York (2000)

    Google Scholar 

  23. West, G.B., Brown, J.H., Enquist, B.J.: A general model for ontogenetic growth. Nature 413(6856), 628 (2001)

    Article  Google Scholar 

  24. West, G.B., Brown, J.H.: Life’s universal scaling laws. Phys. Today 57(9), 36–43 (2004)

    Article  Google Scholar 

  25. Delsanto, P.P., Guiot, C., Degiorgis, P.G., Condat, C.A., Mansury, Y., Deisboeck, T.S.: Growth model for multicellular tumor spheroids. Appl. Phys. Lett. 85(18), 4225–4227 (2004)

    Article  Google Scholar 

  26. Guiot, C., Delsanto, P.P., Carpinteri, A., Pugno, N., Mansury, Y., Deisboeck, T.S.: The dynamic evolution of the power exponent in a universal growth model of tumors. J. Theor. Biol. 240(3), 459–463 (2006)

    Article  MathSciNet  Google Scholar 

  27. Delsanto, P.P., Gliozzi, A.S., Guiot, C.: Scaling, growth and cyclicity in biology: a new computational approach. Theor. Biol. Med. Model. 5, 5 (2008)

    Article  Google Scholar 

  28. Hartung, K.: Healthy Child. In: Venzmer, G. (ed.) New Health Book. Bertelsmann, Ratgeberverlag, Reinhard Mohn (1965;1969)

    Google Scholar 

  29. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D. 23(2), 347 (1981)

    Article  Google Scholar 

  30. Barontini, M., Dahia, P.L.: VHL disease. Best Pract. Res. Clin. Endocrinol. Metab. 24(3), 401–413 (2010)

    Article  Google Scholar 

  31. Linde, A.: Inflation and quantum cosmology. Phys. Scr. 1991(T36), 30 (1991)

    Article  MathSciNet  Google Scholar 

  32. Iordache, D., Delsanto, P.P., Iordache, V.: Similitude models of some growth processes. In: Proceedings of 9th WSEAS International Mathematics and Computers in Biology and Chemistry (MCBC 2008), Bucharest, Romania, 54–59, 24 June 2008

    Google Scholar 

  33. Leibundgut, B., Sollerman, J.: A cosmological surprise: the universe accelerates. Europhys. News 32(4), 121–125 (2001)

    Article  Google Scholar 

  34. Dobrescu, R., Iordache, D.: Complexity Modeling (in Romanian). Politehnica Press, Bucharest (2007)

    Google Scholar 

  35. Wilson, K.G.: Re-normalization group and critical phenomena. Phys. Rev. B 4, 3174–3184 (1971)

    Article  Google Scholar 

  36. Majorana, E.: Il valore delle leggi statistiche nella fisica e nelle scienze sociali. Scientia, Febbraio-Marzo, p. 58 (1942)

    Google Scholar 

  37. Bodegom, E., Iordache, D.: Physics for Engineering students, vol. 1. Politehnica Press, Bucharest (2007)

    Google Scholar 

  38. Prigogine, I., Nicolis, G.: Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York (1977)

    MATH  Google Scholar 

  39. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  40. Mantegna, R.N.: The tenth article of Ettore Majorana. Europhy. News 37(4), 15–17 (2006)

    Article  Google Scholar 

  41. Domb, C., Sykes, M.F.: On the susceptibility of a ferromagnetic above the Curie point. Proc. R. Soc. Lond. A 240(1221), 214–228 (1957)

    Article  Google Scholar 

  42. Zinn-Justin, J.: Quantum Field Theory and critical Phenomena, 4th edn. Oxford University Press, New York (2002)

    Book  Google Scholar 

  43. Iordache, D.: L’étude de la courbe dynamique d’aimantation d’un ferrite mixte de manganèse et zinc, de haute perméabilité. Bull. Polytech. Insts. Bucharest, 29(3) 25–41(1967)

    Google Scholar 

  44. Müller, G.: Rheological properties and velocity dispersion of a medium with power-law dependence of Q on frequency. J. Geophys. 54, 20–29 (1983)

    Google Scholar 

  45. Daniello, L., Iordache, D., et al.: Study of the frequency dependence of the viscosity coefficient of the bloch wall oscillations. Rev. Roum. Phys. 25(2), 193–198 (1980)

    Google Scholar 

  46. Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64(3), 153 (1957)

    Article  Google Scholar 

  47. Kolmogorov, A.N.: J. Fluid Mech. 13, 82 (1962)

    Article  MathSciNet  Google Scholar 

  48. Mandelbrot, B.B.: On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72(3), 401–416 (1975)

    Article  Google Scholar 

  49. Iordache, D.A.: Contributions to the study of Numerical Phenomena intervening in the Computer Simulations of some Physical Processes. Credis Printing House, Bucharest, 118 p. (2004)

    Google Scholar 

  50. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley Interscience Publishers, New York, London (1962)

    MATH  Google Scholar 

  51. Hildebrand, F.B.: Methods of Applied Mathematics, pp. 36–122. Prentice-Hall, New Jersey (1965)

    Google Scholar 

  52. Delsanto, P.P., Chaskelis, H.H., Whitcombe, T., Mignogna, R.: Connection machine simulation of boundary effects in ultrasonic NDE. In: Ruud, C.O., Bussière, J.F., Green, R.E. (eds.) Nondestructive Characterization of Materials IV. Springer, Boston, MA (1991). https://doi.org/10.1007/978-1-4899-0670-0_26

    Chapter  Google Scholar 

  53. Iordache, D.A., Sterian, P., Sterian, A.R., Pop, F.: Complex computer simulations, numerical artifacts, and numerical phenomena. Int. J. Comput. Commun. Control 5(5), 744–754 (2010)

    Article  Google Scholar 

  54. Roşu, C., et al.: Mod. Phys. Lett. B 24(01), 65–73 (2010)

    Article  Google Scholar 

  55. Levenberg, K.: Quart. Appl. Math. 164(1941)

    Google Scholar 

  56. Marquardt, D.W.: An algorithm for least-squares estimation of non-linear parameters. J. Soc. Industr. Appl. Math. 11, 431–441 (1963)

    Article  Google Scholar 

  57. Mei, Z., Morris Jr., J.W.: Mössbauer spectrum curve fitting with a personal computer. Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 47(2), 181–186 (1990)

    Article  Google Scholar 

  58. Bodegom, E., Mcclure, D.W., Delsanto, P.P., Gliozzi, A., Iordache, D.A., Pop, F., Rosu, C., Widemhorn, R.: Computational Physics Guide (2009)

    Google Scholar 

  59. Iordache, D.A., Sterian, P., Tunaru, I.: Study of the gradient method aided dark current spectroscopy of CCDs. Annal. Rom. Sci. Ser. Sci. Technol. Inf. 6(2), 23–42 (2013)

    Google Scholar 

  60. Janesick, J.R.: Scientific charge-coupled devices. SPIE Press, Bellingham (2000). Appendices G1-G4, H1-H3

    Google Scholar 

  61. Widenhorn, R.: Charge Coupled Devices. VDM, Saarbruecken, Germany (2008)

    Google Scholar 

  62. Iordache, D.A., Sterian, P.E., Tunaru, I.: Charge coupled devices as particle detectors. Adv. High Energ. Phys. 2013, 12 (2013)

    Google Scholar 

  63. Widenhorn, R., Bodegom, E., Iordache, D., Tunaru, I.: Computational Approach to Dark Current Spectroscopy in CCDs as complex systems. I. Experimental part and choice of the uniqueness parameters. Print at the Scientific Bull. Univ. “Politehnica” Bucharest, 1 January 2010

    Google Scholar 

  64. Hall, R.N.: Electron-hole recombination in germanium. Phys. Rev. 87(2), 387 (1952)

    Article  Google Scholar 

  65. Shockley, W., Read Jr., W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835 (1952)

    Article  Google Scholar 

  66. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Willey, Hoboken (1981)

    Google Scholar 

  67. Widenhorn, R., Blouke, M.M., Weber, A., Rest, A., Bodegom, E.: Temperature dependence of dark current in a CCD. In: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications III, vol. 4669, pp. 193–202, 24 April 2002

    Google Scholar 

  68. Widenhorn, R., Blouke, M.M., Weber, A., Rest, A., Bodegom, E.: Temperature dependence of dark current in a CCD. In: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications III, vol. 4669, pp. 193–202, 24 April 2002

    Google Scholar 

  69. Rogojan, R., Sterian, P.E., Sterian, A.R., Elisa, M.: Spectral behavior and nonlinear optical properties of aluminophosphate semiconductor-doped glasses. In: 11th International School on Quantum Electronics: Laser Physics and Applications, vol. 4397, pp. 358–362, 9 April 2001

    Google Scholar 

  70. Landau, R.H., Paez, R.H.: Computational Physics: Problem Solving with Computers. Wiley, New York, Chichester (1997)

    MATH  Google Scholar 

  71. Dima M, et al.: The QUANTGRID project (RO)—quantum security in GRID computing applications. In: AIP Conference Proceedings, AIP, vol. 1203(1) (2010)

    Google Scholar 

  72. Iliescu, F.S., Sterian, A.P., Barbarini, E., Avram, M., Iliescu, C.: Continuous separation of white blood cell from blood in a microfluidic device. UPB Sci. Bull. Ser. A. 71(4), 21–30 (2009)

    Google Scholar 

  73. Maciuc, F.C., Stere, C.I., Sterian, A.R.: Rate equations for an erbium laser system: a numerical approach. In: Sixth Conference on Optics, ROMOPTO 2000, 29 Jun, vol. 4430, pp. 136–147 (2001)

    Google Scholar 

  74. Lazar, B., et al.: Simulating delayed pulses in organic materials. Comput. Sci. Appl. 2006, 779–784 (2006)

    Google Scholar 

  75. Sterian, A., Sterian, P.: Mathematical models of dissipative systems in quantum engineering. Math. Prob. Eng. 2012, 12 (2012). Article ID 347674

    Article  MathSciNet  Google Scholar 

  76. Ninulescu, V., Sterian, A.-R.: Dynamics of a two-level medium under the action of short optical pulses. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun, Y., Taniar, D., Tan, Chih Jeng Kenneth (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 635–642. Springer, Heidelberg (2005). https://doi.org/10.1007/11424857_70

    Chapter  Google Scholar 

  77. Sterian, A., Ninulescu, V.: Nonlinear phenomena in erbium-doped lasers. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 643–650. Springer, Heidelberg (2005). https://doi.org/10.1007/11424857_71

    Chapter  Google Scholar 

  78. Dănilă, O., et al.: Perspectives on entangled nuclear particle pairs generation and manipulation in quantum communication and cryptography systems. Adv. High Energ. Phys. 2012, 10 (2012)

    MATH  Google Scholar 

  79. Dima, M., et al.: Classical and quantum communications in grid computing. Optoelectron. Adv. Mater. Rapid Commun. 4(1), 1840–1843 (2010)

    MathSciNet  Google Scholar 

  80. Stefanescu, E., et al.: Study on the fermion systems coupled by electric dipol interaction with the free electromagnetic field. In: Proceedings of SPIE 5850, Advanced Laser Technologies 2004, 160 (2005)

    Google Scholar 

  81. Sterian, A.R.: Computer modeling of the coherent optical amplifier and laser systems. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4705, pp. 436–449. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74472-6_35

    Chapter  Google Scholar 

  82. Anghel, D.A., et al.: Modeling quantum well lasers. Math. Prob. Eng. 2012, 11 (2012)

    Article  MathSciNet  Google Scholar 

  83. Urquhart, P. (ed.): Advances in Optical Amplifiers. InTech, Rijeka, Croatia (2011)

    Google Scholar 

Download references

Acknowledgements

The authors thank very much to Professor Pier Paolo Delsanto and to Dr. Marco Scalerandi from Dipartimento di Fisica di Politecnico di Torino for their valuable cooperation concerning the Finite Differences and LISA methods, as well as to Professors Erik Bodegom and Ralf Widenhorn from the Physics Department of the Portland State University for their important awarded information and suggestions concerning the field of Charge Coupled Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Enache Sterian .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iordache, D.A., Sterian, P.E. (2018). Study of Some Complex Systems by Using Numerical Methods. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics