Skip to main content

A Multiscale Finite Element Formulation for the Incompressible Navier-Stokes Equations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

In this work we present a variational multiscale finite element method for solving the incompressible Navier-Stokes equations. The method is based on a two-level decomposition of the approximation space and consists of adding a residual-based nonlinear operator to the enriched Galerkin formulation, following a similar strategy of the method presented in [1, 2] for scalar advection-diffusion equation. The artificial viscosity acts adaptively only onto the unresolved mesh scales of the discretization. In order to reduce the computational cost typical of two-scale methods, the subgrid scale space is defined using bubble functions whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. Accuracy comparisons with the streamline-upwind/Petrov-Galerkin (SUPG) formulation combined with the pressure stabilizing/Petrov-Galerkin (PSPG) method are conducted based on 2D benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos, I.P., Almeida, R.C.: A nonlinear subgrid method for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 196, 4771–4778 (2007)

    Article  MathSciNet  Google Scholar 

  2. Santos, I.P., Almeida, R.C., Malta, S.M.C.: Numerical analysis of the nonlinear subgrid scale method. Comput. Appl. Math. 31(3), 473–503 (2012)

    Article  MathSciNet  Google Scholar 

  3. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: Math. Model. Numer. Anal. - Modélisation Mathématique et Analyse Numérique 8(R2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Brooks, A.N., Hughes, T.J.R.: Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  5. Hughes, T., Tezduyar, T.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984)

    Article  MathSciNet  Google Scholar 

  6. Hughes, T.J., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: Viii. The Galerkin/Least-Squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)

    Article  MathSciNet  Google Scholar 

  7. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)

    Article  MathSciNet  Google Scholar 

  8. Codina, R., Blasco, J.: Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales. Comput. Vis. Sci. 4, 167–174 (2002)

    Article  MathSciNet  Google Scholar 

  9. Lins, E.F., Elias, R.N., Guerra, G.M., Rochinha, F.A., Coutinho, A.L.G.A.: Edge-based finite element implementation of the residual-based variational multiscale method. Int. J. Numer. Methods Fluids 61(1), 1–22 (2009)

    Article  MathSciNet  Google Scholar 

  10. Masud, A., Khurram, R.: A multiscale finite element method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 195(13–16), 1750–1777 (2006)

    Article  MathSciNet  Google Scholar 

  11. Arruda, N.C.B., Almeida, R.C., Carmo, E.G.D.: Dynamic diffusion formulations for advection dominated transport problems. Mecánica Computacional 29, 2011–2025 (2010)

    Google Scholar 

  12. Valli, A.M., Almeida, R.C., Santos, I.P., Catabriga, L., Malta, S.M., Coutinho, A.L.: A parameter-free dynamic diffusion method for advection-diffusion-reaction problems. Comput. Math. Appl. 75(1), 307–321 (2018)

    Article  MathSciNet  Google Scholar 

  13. Bento, S.S., Barbosa, P.W., Santos, I.P., de Lima, L.M., Catabriga, L.: A nonlinear finite element formulation based on multiscale approach to solve compressible Euler equations. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A. (eds.) ICCSA 2017, Part VI. LNCS, vol. 10409, pp. 735–743. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62407-5_55

    Chapter  Google Scholar 

  14. Bento, S.S., de Lima, L.M., Sedano, R.Z., Catabriga, L., Santos, I.P.: A nonlinear multiscale viscosity method to solve compressible flow problems. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016, Part I. LNCS, vol. 9786, pp. 3–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_1

    Chapter  Google Scholar 

  15. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-3658-8

    Book  MATH  Google Scholar 

  16. Hughes, T.J., Feijóo, G.R., Mazzei, L., Quincy, J.B.: The variational multiscale method-a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998)

    Article  MathSciNet  Google Scholar 

  17. Tezduyar, T.E.: Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS Computational Fluid Dynamics Conference, September 2001

    Google Scholar 

  18. Calo, V.M.: Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition. PhD thesis, Stanford University (2005)

    Google Scholar 

  19. Elias, R.N., Coutinho, A.L.G.A., Martins, M.A.D.: Inexact Newton-type methods for non-linear problems arising from the SUPG/PSPG solution of steady incompressible Navier-Stokes equations. J. Braz. Soc. Mech. Sci. Eng. 26, 330–339 (2004)

    Article  Google Scholar 

  20. Ghia, U., Ghia, K., Shin, C.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)

    Article  Google Scholar 

  21. Lee, T., Mateescu, D.: Experimental and numerical investigation of 2-D backward-facing step flow. J. Fluids Struct. 12(6), 703–716 (1998)

    Article  Google Scholar 

  22. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  Google Scholar 

  23. Johnson, C., Pitkäranta, J.: Analysis of some mixed finite elements related to reduced integration. Technical report, Chalmers University of Technology and University of Goteborg (1980)

    Google Scholar 

  24. Carey, G., Krishnan, R.: Penalty approximation of stokes flow. Comput. Meths. Appl. Mech. Eng. 35, 169–206 (1982)

    Article  MathSciNet  Google Scholar 

  25. Valli, A., Coutinho, A., Carey, G.: Control strategies for timestep selection in finite element simulation of incompressible flows and coupled heat and mass transfer. Technical report, COPPE - Federal University of Rio de Janeiro (2001)

    Google Scholar 

  26. Tobiska, L., Verfürth, R.: Analysis of a streamline diffusion finite element method for the stokes and Navier–Stokes equations. SIAM J. Numer. Anal. 33(1), 107–127 (1996)

    Article  MathSciNet  Google Scholar 

  27. Armaly, B.F., Durst, F., Pereira, J., Schönung, B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riedson Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baptista, R., Bento, S.S., Santos, I.P., Lima, L.M., Valli, A.M.P., Catabriga, L. (2018). A Multiscale Finite Element Formulation for the Incompressible Navier-Stokes Equations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics