Skip to main content

Construction and Application of a Probabilistic Atlas of 3D Landmark Points for Initialization of Hippocampus Mesh Models in Brain MR Images

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

The magnetic resonance (MR) imaging has become an indispensable tool for diagnosis and study of various brain diseases. To perform an accurate diagnosis of a brain disease and monitor its evolution and treatment outcomes, a neuroradiologist often needs to measure the volume and assess the changes of shapes in specific brain structures along a series of MR images. In general, brain structures are manually delineated by a radiologist and, therefore, they highly dependend on the professional’s skills. In this study, we proposed the construction of a probabilistic atlas consisting of 3D landmark points automatically detected in a set of MR images. Also, we aimed at investigate its applicability to guide the initial positioning of mesh models based on the deformation of the hippocampus in brain MR images. The normalized Dice Similarity Coefficient (DSC) and the Hausdorff Average Distance (HAD) were used for the quantitative performance evaluation of the proposed method. The results showed that the average values obtained by our atlas-based landmark approach were significantly better (DSC = 0.74/0.70, HAD = 0.70/0.73, for left and right hippocampus, respectively) than our previous initial approaches, such as the template-based landmark (DSC = 0.65/0.61, HAD = 0.88/0.91) and the affine transformation (DSC = 0.58/0.53, HAD = 1.10/1.22).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “landmark point” or “salient point” refers to an image point that stands locally due to its specific characteristic (e.g., high degree of curvature) and is usually visible to the naked eye. It does not necessarily represent an anatomical reference point that would be marked by an expert, although this is usually the case.

  2. 2.

    http://nac.spl.harvard.edu.

  3. 3.

    http://www.brain-development.org.

  4. 4.

    http://www.hippocampal-protocol.net.

References

  1. Johnson, K.A., Fox, N.C., Sperling, R.A., Klunk, W.E.: Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2(4), 1–23 (2012)

    Article  Google Scholar 

  2. Shen, K.K., Fripp, J., Mériaudeau, F., Chételat, G., Salvado, O., Bourgeat, P.: Detecting global and local hippocampal shape changes in Alzheimer’s disease using statistical shape models. NeuroImage 59(3), 2155–2166 (2012)

    Article  Google Scholar 

  3. Farag, A.: Deformable Models: Biomedical and Clinical Applications. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-68413-0

    Book  MATH  Google Scholar 

  4. Pekar, V., McNutt, T.R., Kaus, M.R.: Automated model-based organ delineation for radiotherapy planning in prostatic region. Int. J. Radiat. Oncol. Biol. Phys. 60(3), 973–980 (2004)

    Article  Google Scholar 

  5. Liu, C.Y., Iglesias, J.E., Tu, Z.: Deformable templates guided discriminative models for robust 3D brain MRI segmentation. NeuroInformatics 11(4), 447–468 (2013)

    Article  Google Scholar 

  6. Ghose, S., Mitra, J., Oliver, A., Marti, R., Llado, X., Freixenet, J., Vilanova, J.C., Sidibe, D., Meriaudeau, F.: A coupled schema of probabilistic atlas and statistical shape and appearance model for 3D prostate segmentation in MR images. In: 19th IEEE International Conference on Image Processing (ICIP), Orlando, FL, pp. 541–544. IEEE (2012)

    Google Scholar 

  7. Ferrari, R.J., Allaire, S., Hope, A., Kim, J., Jaffray, D., Pekar, V.: Detection of point landmarks in 3D medical images via phase congruency model. J. Braz. Comput. Soc. 17(2), 117–132 (2011)

    Article  Google Scholar 

  8. Qazi, A.A., Pekar, V., Kim, J., Xie, J., Breen, S.L., Jaffray, D.A.: Auto-segmentation of normal and target structures in head and neck CT images: A feature-driven model-based approach. Med. Phys. 38(11), 6160–6170 (2011)

    Article  Google Scholar 

  9. Zhang, J., Chen, L., Wang, X., Teng, Z., Brown, A.J., Gillard, J.H., Guan, Q., Chen, S.: Compounding local invariant features and global deformable geometry for medical image registration. PLoS ONE 9(8), e105815 (2014)

    Article  Google Scholar 

  10. Apostolova, L.G., Zarow, C., Biado, K., Hurtz, S., Boccardi, M., Somme, J., Honarpisheh, H., Blanken, A.E., Brook, J., Tung, S., et al.: Relationship between hippocampal atrophy and neuropathology markers: a 7T MRI validation study of the EADC-ADNI harmonized hippocampal segmentation protocol. Alzheimer’s Dement. 11(2), 139–150 (2015)

    Article  Google Scholar 

  11. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, vol. 2, pp. 60–65. IEEE Computer Society (2005)

    Google Scholar 

  12. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  13. Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)

    Article  Google Scholar 

  14. Ourselin, S., Stefanescu, R., Pennec, X.: Robust registration of multi-modal images: towards real-time clinical applications. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 140–147. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45787-9_18

    Chapter  Google Scholar 

  15. Iglesias, J.E., Liu, C.Y., Thompson, P., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imaging 30(9), 1617–1634 (2011)

    Article  Google Scholar 

  16. Villa-Pinto, C.H., Ferrari, R.J.: Initialization of deformable models in 3D magnetic resonance images guided by automatically detected phase congruency point landmarks. Pattern Recogn. Lett. 79, 1–7 (2016)

    Article  Google Scholar 

  17. Morrone, M.C., Ross, J., Burr, D.C., Owens, R.: Mach bands are phase dependent. Nature 324(6094), 250–253 (1986)

    Article  Google Scholar 

  18. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. Pattern Anal. Mach. 24(4), 509–522 (2002)

    Article  Google Scholar 

  19. Vincent, P., Bengio, Y.: Manifold parzen windows. In: Becker, S., Thrun, S., Obermayer, K. (eds.): Advances in Neural Information Processing Systems 15, pp. 849–856. MIT Press (2003)

    Google Scholar 

  20. Lee, S., Wolberg, G., Shin, S.Y.: The ITK Software Guide, 4th edn. Kitware, Inc., Clifton Park (2017)

    Google Scholar 

  21. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-splines. IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997)

    Article  Google Scholar 

  22. Henderson, C., Izquierdo, E.: Symmetric stability of low level feature detectors. Pattern Recogn. Lett. 78, 36–40 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP) (grants no. 2014/11988 0 and 2015/02232 1) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Maria Poloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poloni, K.M., Villa Pinto, C.H., da Silveira Souza, B., Ferrari, R.J. (2018). Construction and Application of a Probabilistic Atlas of 3D Landmark Points for Initialization of Hippocampus Mesh Models in Brain MR Images. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10960. Springer, Cham. https://doi.org/10.1007/978-3-319-95162-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95162-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95161-4

  • Online ISBN: 978-3-319-95162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics