Skip to main content

Mechanics of Discrete Granular Media

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 87))

Abstract

This chapter links the Cosserat continuum with discrete granular media. Through a discrete modelling approach, it presents a homogenisation method based on intergranular energetics and fabric averaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Point \( {\rm K}_{\alpha } \) could be the centroid of the grain.

  2. 2.

    Note that in this equation summation of repeated lower indices is meant!

References

  1. Satake, M. (1968). Some considerations on the mechanics of granular materials. In E. Kröner (Ed.), Mechanics of generalized continua (pp. 156–159). Berlin: Springer.

    Google Scholar 

  2. Günther, W. (1958). Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweigische Wissenschaftliche Gesellschaft, 10, 195–213.

    MATH  Google Scholar 

  3. Kröner, E. (1992). Plastizität der Versetzungen. In A. Sommerfeld (Ed.), Mechanik der deformierbaren Medien (pp. 310–376). Verlag Harri Deutsch: Frankfurt.

    Google Scholar 

  4. Rivier, N. (2006). Extended constraints, arches and soft modes in granular materials. Journal of Non-Crystalline Solids, 352, 4505–4508.

    Article  Google Scholar 

  5. Oda, M., & Kazama, H. (1998). Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique, 48, 465–481.

    Article  Google Scholar 

  6. Satake, M. (1998). Finite difference approach to the shear band formation from viewpoint of particle column buckling. In Thirteenth Southeast Asian Geotechnical Conference. Taipei, Taiwan: ROC.

    Google Scholar 

  7. Dietrich, T. (1976). Der psammische Stoff als Modell des mechanischen Sandes. Universität Karlsruhe.

    Google Scholar 

  8. Vardoulakis, I. (1989). Shear banding and liquefaction in granular materials on the basis of a Cosserat continuum theory. Ingenieur Archiv, 59, 106–113.

    Article  Google Scholar 

  9. Radjai, F., et al. (1998). Bimodal character of stress transmission in granular packings. Physical Review Letters, 80, 61–64.

    Article  Google Scholar 

  10. Staron, L., Vilotte, J. P., & Radjai, F. (2001). Friction and mobilization of contacts in granular numerical avalanches. In Powders & grains 2001. Sendai, Japan: Swets & Zeitlinger.

    Google Scholar 

  11. Tordesillas, A. (2007). Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philosophical Magazine, 87, 4987–5016.

    Article  Google Scholar 

  12. Froiio, F., Tomassetti, G., & Vardoulakis, I. (2006). Mechanics of granular materials: The discrete and the continuum descriptions juxtaposed. International Journal of Solids and Structures, 43(25–26), 7684–7720.

    Article  MathSciNet  Google Scholar 

  13. Bardet, J. P., & Vardoulakis, I. (2001). The asymmetry of stress in granular media. International Journal of Solids and Structures, 38, 353–367.

    Article  Google Scholar 

  14. Brand, L. (1940). Vector and tensor analysis. John Wiley.

    Google Scholar 

  15. Chang, C. S., & Liao, L. L. (1990). Constitutive relation for a particulate medium with the effect of particle rotation. International Journal of Solids and Structures, 26(4), 437–453.

    Article  Google Scholar 

  16. Landau, L. D., & Lifshitz, E. M. (1959). Theory of elasticity. Course of theoretical physics. Oxford: Pergamon Press.

    Google Scholar 

  17. Love, A. E. H. (1927). A treatise of the mathematical theory of elasticity. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  18. Chree, C. (1892). Changes in the dimension of elastic bodies due to given systems of forces. Transactions of the Cambridge Philosophical Society, 15, 313–337.

    Google Scholar 

  19. Fortin, J., Millet, O., & de Saxcé, G. (2002). Mean stress in a granular medium in dynamics. Mechanics Research Communications, 29(4), 235–240.

    Article  Google Scholar 

  20. Weber, J. (1966). Recherche concernant les contraintes intergranulaires dans les milieux pulverulents. Bulletin de Liaison Ponts et Chausses, 20, 1–20.

    Google Scholar 

  21. Christoffersen, J., Mehrabadi, M. M., & Nemat-Nasser, S. (1981). A micromechanical description of granular material behavior. ASME Journal of Applied Mechanics, 48(2), 339–344.

    Article  Google Scholar 

  22. Rothenburg, L., & Selvadurai. A. P. S. (1981). A micromechanical definition of the Cauchy stress tensor for particular media. In International Symposium on the Mechanical Behavior of Structured Media. Ottawa: Elsevier.

    Google Scholar 

  23. Tordesillas, A., & Walsh, D. C. S. (2002). Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technology, 124, 106–111.

    Article  Google Scholar 

  24. Oda, M., & Iwashita, K. (2000). Study on couple stress and shear band development in granular media based on numerical simulation analyses. International Journal of Engineering Science, 38, 1713–1740.

    Article  Google Scholar 

  25. Cole, D. M., & Peters, J. F. (2007). A physically based approach to granular media mechanics: Grain-scale experiments, initial results and implications to numerical modeling. Granular Matter, 9(5), 309–321.

    Article  Google Scholar 

  26. Mehrabadi, M. M., & Cowin, S. C. (1978). Initial planar deformation of dilatant granular materials. Journal of the Mechanics and Physics of Solids, 26, 269–284.

    Article  MathSciNet  Google Scholar 

  27. Jiang, M. J., Yu, H. S., & Harris, D. (2005). A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics, 32(5), 340–357.

    Article  Google Scholar 

  28. Alonso-Marroquin, F., et al. (2006). Effect of rolling on dissipation in fault gouges. Physical Review E, 74, 031306.

    Article  Google Scholar 

  29. Estrada, N., Taboada, A., & Radjai, F. (2008). Shear strength and force transmission in granular media with rolling resistance. Physical Review E, 78, 021301.

    Article  Google Scholar 

  30. Godet, M. (1990). Third-bodies in tribology. Wear, 136, 29–45.

    Article  Google Scholar 

  31. Hamel, G. (1921). Elementare Mechanik. Zeitschrift für Angewandte Mathematik und Mechanik, 1(3), 219–223.

    Article  Google Scholar 

  32. Satake, M. (1982). Fabric tensor in granular materials. In IUTAM Conference on Deformation and Failure of Granular Materials. Delft: Balkema.

    Google Scholar 

  33. Kanatani, K. (1979). A micropolar continuum theory for flow of granular materials. International Journal of Engineering Science, 17, 419–432.

    Article  Google Scholar 

  34. Vardoulakis, I., & Sulem, J. (1995). Bifurcation analysis in geomechanics. Blackie Academic & Professional.

    Google Scholar 

  35. Mühlhaus, H.-B., & Vardoulakis, I. (1987). The thickness of shear bands in granular materials. Géotechnique, 37, 271–283.

    Article  Google Scholar 

  36. Besdo, D. (1974). Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta Mechanica, 20, 105–131.

    Article  MathSciNet  Google Scholar 

  37. Schaefer, H. (1967). Analysis der Motorfelder in Cosserat-Kontinuum. Zeitschrift für Angewandte Mathematik und Mechanik, 47, 319–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vardoulakis, I. (2019). Mechanics of Discrete Granular Media. In: Cosserat Continuum Mechanics . Lecture Notes in Applied and Computational Mechanics, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-95156-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95156-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95155-3

  • Online ISBN: 978-3-319-95156-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics