Species Senescence

  • Igor Popov


Many orthogeneticists argued that species and other taxa undergo the same transformation as individuals: they are born, develop and die. While the environment or competitors can indeed cause extinction, senile and weak groups, which are about to die anyway, are the first to succumb. Their opponents claimed that extinction was always a forced process caused by competitors and/or changing conditions and/or direct extermination and that the origin and evolution of species was not age-related. A lack of convincing explanations of past extinctions testifies in favour of species senescence.


Extinction Senescence Survival Abiotic and biotic factors Bioevents 


  1. Alekseev AS (1998) Mass extinctions in the Phanerozoic (Massovye vymiraniya v fanerozoe). Extended abstract of Cand Sci (Geol) Dissertation. MoscowGoogle Scholar
  2. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous–tertiary extinction. Science 208(4448):1095–1108CrossRefPubMedGoogle Scholar
  3. Anisimov VN (2008) Molecular and physiological bases of ageing (Molecularniye i fiziologicheskiye osnovy stareniia). Nauka, St PetersburgGoogle Scholar
  4. Beecher CK (1898) The origin and significance of spines: a study in evolution. Am. J. Sci., 4th series, 5(6): 1–20Google Scholar
  5. de Bonis L (1991) Evolution and extinction in the animal kingdom (Évolution et extinction dans le règne animal). Masson, ParisGoogle Scholar
  6. Bowler PJ (1983) The eclipse of Darwinism. Johns Hopkins Univ Press, BaltimoreGoogle Scholar
  7. Clarkson ENK (1998) Invertebrate paleontology and evolution. Blackwell Science LtdGoogle Scholar
  8. Davitashvili LS (1948) The history of evolutionar palaeontology from Darwin to our days (Istoriya evolyutsionnoy paleontologii ot Darvina do nashikh dney). AN SSSR, Moscow/LeningradGoogle Scholar
  9. Davitashvili LS (1969) The causes of extinction of organisms (Prichiny vymiraniya organizmov). Nauka, MoscowGoogle Scholar
  10. Decugis H (1943) Ageing of the living world (Le viellissement du monde vivant). Masson et C-ie, ParisGoogle Scholar
  11. Desutter-Grandcolas L (1997) Studies in cave life evolution. A rationale for future theoretical developments using phylogenetic inference. J Zool Syst and Evol Res 35(1):23–31CrossRefGoogle Scholar
  12. Donovan DT (1993) Ammonites in 1991. In: House MR (ed) The Ammonoidea: Environment, Ecology and Evolutionary Change. Systematics Association Special, vol 47. Clarendon Press, Oxford, pp 1–12Google Scholar
  13. Jepsen GL (1949) Selection, “orthogenesis”, and fossil record. Proc Am Philos Soc 93(6):479–501PubMedGoogle Scholar
  14. Kaiser HE (1970) The abnormal in the evolution (das Abnorme in der evolution). E. J. Brill, LeidenGoogle Scholar
  15. Krasilov VA (1984) The theory of evolution: a need for a new synthesis (Teoriya evolyutsii: neobkhodimost' novogo sinteza). In: Krasilov VA (ed) Evolutionary studies. Marcoevolution (Evolyutsionnye issledovaniya Makroevolyutsiya) DVNTs RAN, Vladivostok, pp 4–12Google Scholar
  16. Mayr E (1970) Populations, species, and evolution. Belknap Press of Harvard University Press, Cambridge (Mass)Google Scholar
  17. Nesov LA (1991) Pterosauri over plane-tree forests and brackish-water bays of seas (Krylatye yashchery nad platanovymi lesami i solonovatymi zalivami morey). Gerpetologicheskie issledovaniya 1:147–163Google Scholar
  18. Olovnikov A (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31(4):443–448CrossRefPubMedGoogle Scholar
  19. Raup DM, Sepkoski J (1984) Periodicity of extinctions in the geologic past. Proc Nat Acad Sci USA 81:801–805CrossRefPubMedGoogle Scholar
  20. Rensch B (1954) New problems of the evolutionary theory: transspecies evolution (Neuere Probleme der Abstammungslehre: transspeciphische evolution). Enke, StuttgartGoogle Scholar
  21. de Rosa D (1931) Ologenesis. A new theory of evolution and geographic distribution of living beings (L’Ologénèse. Nouvelle théorie de l’évolution et de la distribution géografique des êtres vivants). Libraire Félix Alcan, ParisGoogle Scholar
  22. Schmalhausen II (1969) The problems of Darwinism (Problemy darvinisma). Nauka, LeningradGoogle Scholar
  23. Taylor PD, Lang WD (2002) orthogenesis and the evolution of Cretaceous cribrimorph bryozoans. In: Patrick N, Wyse J, MES J (eds) Annals of Bryozoology. International Bryozoology Association, Dublin, pp 275–299Google Scholar
  24. Teichert C (1990) The Permian-Triassic boundary revisited. In: Kauffman EG, Walliser OH (eds) Extinction Events in Earth History. Springer, Berlin/Heidelberg/New York, pp 199–238CrossRefGoogle Scholar
  25. Vandel A (1965) Biospeleology. The biology of cavernicolous animals. Pergamon Press, OxfordGoogle Scholar
  26. Walliser OH (1986) Towards a more critical approach to bioevents. In: Walliser O (ed) Global bioevents in earth history. Springer Verlag, Berlin, pp 5–16Google Scholar
  27. Walliser O (1996) Patterns and causes of global events. In: Walliser O (ed) Global and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 7–19CrossRefGoogle Scholar
  28. Zherikhin VV (2003) Selected works in palaeontology (Izbrannye trudy po paleoekologii). KMK, MoscowGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Igor Popov
    • 1
  1. 1.Saint Petersburg State University, N. N. Petrov Research Institute of OncologySaint PetersburgRussia

Personalised recommendations