Advertisement

Conclusion

  • Igor Popov
Chapter

Abstract

Concepts of directed evolution have been emerging over the entire period of the existence of evolutionary biology, and keep doing so nowadays. At the same time, the main arguments are being repeated again and again. The following evidence has often been interpreted in favour of directed evolution: constraints on variation , purely age-related changes in the evolution of groups of organisms, preadaptations, parallelisms and convergences, maladaptive characters. The mechanisms of these phenomena are equally difficult to explain regardless of whether Darwinism or its alternatives are chosen as the theoretical framework. The supporters of the idea of directed evolution paid special attention to these phenomena and collected abundant material on them, identifying in this way promising research directions in evolutionary biology. Seen in this regard, orthogenesis is a productive, though unrealised trend rather than a dead end of the evolutionary thought.

Keywords

Concepts of directed evolution Arguments History 

References

  1. Aguirre E (1958) Orthogenesis and the problem of biological evolution (La orthogenesis y el problema de la evolución biológica). Madrid Arbor 39(148):467–502Google Scholar
  2. Akhnazarov EB (2002) The contours of evolution (Kontury evolyutsii). Nedra, St PetersburgGoogle Scholar
  3. Baer KE von (1876) On the Darwinian teaching (Über Darwinsche Lehre). In: Studien aus dem Gebiete der Naturwissenschaften. Verlag der Caiferlichen Hofbuchhandlung H. Schmissdorf, St Petersburg, pp 235–479Google Scholar
  4. Berg LS (1926) Nomogenesis or evolution determined by law, English edn. Constable & Co. ltd., LondonGoogle Scholar
  5. Cope ED (1868) On the origin of genera. Proceedings of Academy of Natural Sciences of Philadelphia4, pp 242–305Google Scholar
  6. Cope ED (1896) Primary factors of organic evolution. Open Court Publishing, ChicagoGoogle Scholar
  7. Croizat L (1958) Panbiogeography. 3 volumes. Published by the author, CaracasGoogle Scholar
  8. Croizat L (1962) Spaceflight, Time, Form: the biological synthesis. Published by the author, CaracasGoogle Scholar
  9. de Rosa D (1931) Ologenesis. A new theory of evolution and geographic distribution of living beings (L’Ologénèse. Nouvelle théorie de l’évolution et de la distribution géografique des êtres vivants). Libraire Félix Alcan, ParisGoogle Scholar
  10. Eimer Th (1897) Orthogenesis of butterflies. An argument determines directed development and the impotence of natural selection for the origin of species. At the same time a rejoindre to August Weismann (Orthogenesis der Schmetterlinge. Ein Beweis bestimmt gerichteter Entwickelung und Ohnmacht der naturlichen Zuchtwahl bei der Artbildung. Zugleich eine Erwiderung an August Weismann). W. Engelmann, LeipzigGoogle Scholar
  11. Gutmann WF (1994) Constructional constraints in the evolution: swimming tetrapods (Konstruktionszwänge in der evolution: schwimmende Vierfüsser). Nat Mus 124(6):165–189Google Scholar
  12. Gutmann M, Weingarten M (1992) Principles of construction morphology and organismic theory of evolution (Grundlagen von Konstruktionsmorphologie und organismischerEvolutionstheorie). Aufsaetze und Reden senck naturf Ges 38:51–68Google Scholar
  13. Gutmann M, Weingarten M (1994) Changes in the discussion of evolutionary theory: the abolishment of atomism in genetics (Veränderungen in der evolutiontheoretischen Diskussion: die Aufhebung des Atomismus in der Genetik). Nat Mus 124(6):189–196Google Scholar
  14. Haacke W (1893) Form and inheritance. Developmental mechanichs of organisms (Gestaltung und Vererbung. Eine Entwickelungsmechanik der Organismen). T. O. Weigel Nachfolger, LeipzigGoogle Scholar
  15. Kawamura K (2002) The origin of life from “the life of subjectivity”. In: Fundamentals of life. Éditions scientifiques et médicales Elsevier SAS, pp 563–575Google Scholar
  16. Kölliker RA (1864) On the Darwinian theory of creation (Über die Darwin'sche Schöpfungstheorie). Vortrag 1864 in Würzburg. Z Wiss Zool 14:174–186Google Scholar
  17. Kölliker RA (1872) Morphology and developmental history of Pennatulid genera alongside general considerations concerning evolutionary theory (Morphologie und Entwickelungsgeschichte des Pennatulidenstammes nebst allgemeinen Betrachtungen zur Descendenzlehre). Christian Winter, Frankfurt a. MGoogle Scholar
  18. Labbé A (1924) A new concept of adaptation: allelogenesis (Une conception nouvelle de l’adaptation: l’allélogénese). Revue scientifique 10:295–301Google Scholar
  19. Lang WD (1916) Calcium carbonate and evolution in Polyzoa. Geological Magazine, Decade 6(3):73–77CrossRefGoogle Scholar
  20. Lang WD (1919) The Pelmatoporinae, an essay on the evolution of a group of cretaceous Polyzoa, Philosophical transactions of the Royal Society of London, Series B, vol 209, pp 191–228Google Scholar
  21. Lima de Faria A (1988) Evolution without selection: form and function by autoevolution. Kindle EditionGoogle Scholar
  22. Lima de Faria A (1995) Biological periodicity: its molecular mechanism and evolutionary implication. JAI Press, Greenwich (Conn)Google Scholar
  23. Lwoff A (1943) Physiological evolution. A study of losses of function in microorganisms (L’évolution phisiologique. Étude des pertes de fonction chez les microorganisms). Actual Sc Industr 970Google Scholar
  24. Nägeli C (1856) Individuality in nature with regard to plant world (Die Individualität in der Natur mit Berücksichtigung des Pflanzenreichs). Akademishe Vortrage, II. Verlag von Meyer & Zeller, Zurich, pp 171–212Google Scholar
  25. Nägeli C (1865) Origin and concept of species in natural history (Entstehung und Begriff der Naturhistorischen Art), Im Verlage der koenigl Akademia, MünchenGoogle Scholar
  26. Nägeli C (1884) Mechanistic-physiological theory of evolution (Mechanischphysiologische Theorie der Abstammungslehre). Druck und Verlag von R. Oldenbourg, Munich and LeipzigGoogle Scholar
  27. Osborn HF (1934) Aristogenesis, the creative principle in the origin of species. Amer Nat 68:193–235CrossRefGoogle Scholar
  28. Przibram H (1929) Apogenetical theory of the evolution of organisms (Théorie apogénétique de l’évolution des organisms). Revue générale des Sciences pures et appliquées 40:293–299Google Scholar
  29. Schindewolf OH (1936) Paleontology, evolution and genetics: critics and synthesis (Paläontologie, Entwicklungslehre und Genetik: Kritik und Synthese). Borntraeger, 1936Google Scholar
  30. Schindewolf OH (1950) Basic Questions in Palaeontology: Geologic Time, Organic Evolution and biological Systematics. (Grundfragen der Paläontologie. Geologische Zeitmessung, Organische Stammesentwicklung, Biologische Systematik). Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  31. Sobolev DN (1924) The fundamentals of historical biogenetics (Nachala istoricheskoy biogenetiki). Gosudarstvennoe izdatel’stvo Ukrainy, SimferopolGoogle Scholar
  32. Teilhard de Chardin P (1950) Concerning a remarkable case of orthogenesis of a group: evolution of Chinese siphneides (Sur un cas remarquable d’orthogénèse du groupe: l’évolution des siphnéides de Chine). Paléontologie et transformisme. Albin Michel, Paris, pp 169–173Google Scholar
  33. Teilhard de Chardin P (1961) The phenomenon of man, Harper Torchbooks, The Cloister Library, Harper & Row PublishersGoogle Scholar
  34. Vandel A (1964) Biospeleology. The biology of cave animals (Biospéologie. La biologie des Animaux Cavernicoles). Gauthier-Villars Éditeur, Paris. English edition: Vandel A (1965) biospeleology. The biology of cavernicolous animals. Pergamon Press, OxfordGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Igor Popov
    • 1
  1. 1.Saint Petersburg State University, N. N. Petrov Research Institute of OncologySaint PetersburgRussia

Personalised recommendations