Skip to main content

Real Time Measurement, Monitoring, and Control of CuIn1−xGaxSe2 by Spectroscopic Ellipsometry

  • Chapter
  • First Online:
Spectroscopic Ellipsometry for Photovoltaics

Abstract

Spectroscopic ellipsometry (SE) using a rotating compensator multichannel instrument has been applied in real time for characterization of the three stages of the coevaporation process for copper indium-gallium diselenide (CuIn1−xGaxSe2 ; CIGS ) thin films. This absorber material and the coevaporation process yield the highest small area efficiency among inorganic polycrystalline thin film solar cells . In the first deposition stage of the process, indium-gallium selenide (In1−xGax)2Se3 (IGS) thin film deposition is performed via coevaporation of In, Ga, and Se on a substrate consisting of Mo-coated soda lime glass held at a temperature of 400 °C. In this stage, Mo/IGS interface roughness filling can be characterized along with the subsequent evolution of the IGS bulk and surface roughness layer thicknesses. An accurate rate for the effective thickness (or volume/area) can be determined from these results, and alloy compositional analysis of the IGS has been demonstrated at the first stage endpoint. In the second deposition stage, the IGS film is converted to CIGS via coevaporation of Cu and Se fluxes at an increased substrate temperature of 570 °C. A bulk conversion model provides the best fit to the real time SE data, and this model is employed in the analysis of the second-stage data. The results include the evolution of the content of CIGS within the film, along with the thicknesses of the bulk and surface roughness layers. The formation of a copper selenide (Cu2−xSe ) component phase on the CIGS surface is detected just before the completion of the second stage. Subsequently, the evolution of the near-surface Cu2−xSe content is followed in terms of its effective thickness, spanning the time interval from the end of the second stage through much of the third stage. In the third stage of the deposition process, In, Ga, and Se coevaporation serves to convert the Cu-rich CIGS/Cu2−xSe to slightly Cu-poor CIGS. In this stage, the thickness evolution can be obtained along with bulk and surface roughness layer thicknesses at the overall deposition endpoint. In the three stages, the deduced deposition rates and final thicknesses provide information on the total metallic elemental fluxes, and the roughness evolution provides information on crystalline grain growth and near-surface crystallite coalescence in the polycrystalline films. Variations in the information deduced from real time SE can lead to insights into run-to-run irreproducibility that influences the performance of the resulting solar cells. The application of these capabilities is demonstrated for the fabrication of thin film solar cells in continuous and discontinuous (shuttered) processes for standard thickness (~2.5 μm) CIGS absorber layers as well as a shuttered process deemed necessary for adequate control of the deposition of thin (~0.3 μm) absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.N. Shafarman, S. Siebentritt, L. Stolt, in Handbook of Photovoltaic Science and Engineering, 2nd edn., ed. by A. Luque, S. Hegedus (Wiley, New York, NY, 2011), Chapter 13, pp. 546–599

    Google Scholar 

  2. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Stat. Solidi RRL 10, 583 (2016)

    Article  Google Scholar 

  3. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Phys. Stat. Solidi RRL 9, 28 (2015)

    Article  Google Scholar 

  4. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Nat. Mater. 12, 1107 (2013)

    Article  ADS  Google Scholar 

  5. D. Attygalle, V. Ranjan, P. Aryal, P. Pradhan, S. Marsillac, N.J. Podraza, R.W. Collins, IEEE J. Photovolt. 3, 375 (2012)

    Article  Google Scholar 

  6. P. Pradhan, D. Attygalle, P. Aryal, N.J. Podraza, A.S. Ferlauto, S. Marsillac, R.W. Collins, in Proceedings of the 39th IEEE Photovoltaic Specialists Conference, Tampa, FL, 16–21 June 2013 (IEEE, New York, NY, 2013), pp. 414–419

    Google Scholar 

  7. P. Pradhan, P. Aryal, A.-R. Ibdah, K. Aryal, J. Li, N.J. Podraza, S. Marsillac, R.W. Collins, in Proceedings of the 40th IEEE Photovoltaic Specialists Conference, Denver, CO, 8–13 June 2014 (IEEE, New York, NY, 2014), pp. 2060–2065

    Google Scholar 

  8. P. Pradhan, Real Time Spectroscopic Ellipsometry Analysis of the Three Stages of Cu(In1−xGax)Se2 Co-evaporation. Ph.D. Dissertation, (University of Toledo, Toledo, OH, 2017)

    Google Scholar 

  9. J. Abu-Shama, R. Noufi, Y. Yan, K. Jones, B. Keyes, P. Dippo, M. Romero, M. Al-Jassim, J. Alleman, D.L. Williamson, in II–VI Compound Semiconductor Photovoltaic Materials, Materials Research Society Symposium Proceedings, vol. 668, ed. by R. Birkmire, R. Noufi, D. Lincot, H.-W. Schock (MRS, Warrendale, PA, 2001), Symposium H; H.7.2, pp. 1–6

    Google Scholar 

  10. A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen, A.M. Hermann, Sol. Energy Mater. Sol. Cells 41–42, 247 (1996)

    Article  Google Scholar 

  11. S. Marsillac, R.W. Collins, in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices, San Francisco, CA, 23–26 January 2012, Conference Proceedings of SPIE, vol. 8256, ed. by A. Freundlich, J.-F.F. Guillemoles (SPIE, Bellingham, WA, 2012), Art. No. 825613, pp. 1–11

    Google Scholar 

  12. J. Li, R.W. Collins, M.N. Sestak, P. Koirala, N.J. Podraza, S. Marsillac, A.A. Rockett, in Advanced Characterization Techniques for Thin Film Solar Cells, 2nd edn., ed. by D. Abou-Ras, T. Kirchartz, U. Rau (Wiley-VCH, Weinheim, Germany, 2016), Chapter 9, pp. 215–256

    Google Scholar 

  13. J.D. Walker, H. Khatri, V. Ranjan, S. Little, R. Zartman, R.W. Collins, S. Marsillac, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference, Philadelphia, PA, 7–12 June 2009 (IEEE, New York, NY, 2009), pp. 1154–1156

    Google Scholar 

  14. S. Marsillac, V. Ranjan, S. Little, R.W. Collins, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, NY, 2010), pp. 866–868

    Google Scholar 

  15. P. Aryal, A.-R. Ibdah, P. Pradhan, D. Attygalle, P. Koirala, N.J. Podraza, S. Marsillac, R.W. Collins, J. Li, Prog. Photovolt.: Res. Appl. 24, 1200 (2016)

    Google Scholar 

  16. Y. Cong, I. An, K. Vedam, R.W. Collins, Appl. Opt. 21, 2692 (1991)

    Article  ADS  Google Scholar 

  17. I. An, Y.M. Li, H.V. Nguyen, C.R. Wronski, R.W. Collins, Appl. Phys. Lett. 59, 2543 (1991)

    Article  ADS  Google Scholar 

  18. B. Johs, J.S. Hale, Phys. Stat. Solidi (a) 205, 715 (2008)

    Google Scholar 

  19. H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Phys. Rev. B 61, 10832 (2000)

    Article  ADS  Google Scholar 

  20. J. Li, J. Chen, J.A. Zapien, N.J. Podraza, C. Chen, J. Drayton, A. Vasko, A. Gupta, S.L. Wang, R.W. Collins, A.D. Compaan, in Thin-film Compound Semiconductor Photovoltaics, Materials Research Society Symposium Proceedings, vol. 865, ed. by W. Shafarman, T. Gessert, S. Niki, S. Siebentritt (MRS, Warrendale, PA, 2005), Symposium F; F1.2.1, pp. 9–14

    Google Scholar 

  21. J. Li, J. Chen, M.N. Sestak, R.W. Collins, IEEE J. Photovolt. 1, 187 (2011)

    Article  Google Scholar 

  22. T. Begou, J.D. Walker, D. Attygalle, V. Ranjan, R.W. Collins, S. Marsillac, Phys. Stat. Solidi RRL 5, 217 (2011)

    Article  Google Scholar 

  23. J.D. Walker, H. Khatri, V. Ranjan, J. Li, R.W. Collins, S. Marsillac, Appl. Phys. Lett. 94, 141908 (2009)

    Article  ADS  Google Scholar 

  24. J. Koh, A.S. Ferlauto, P.I. Rovira, R.J. Koval, C.R. Wronski, R.W. Collins, Appl. Phys. Lett. 75, 2286 (1999)

    Article  ADS  Google Scholar 

  25. J.D. Walker, H. Khatri, S. Little, V. Ranjan, R. Collins, S. Marsillac, in Photovoltaic Materials and Manufacturing Issues II, Materials Research Society Symposium Proceedings, vol. 1210, ed. by B. Sopori, J. Yang, T. Surek, B. Dimmler (MRS, Warrendale, PA, 2009), Symposium Q; Q06-02, pp. 159–164

    Google Scholar 

  26. D.I. Chakrabarti, D.E. Laughlin, Bull. Alloy Phase Diagr. 2, 305 (1981)

    Article  Google Scholar 

  27. V.M. Glazov, A.S. Pashinkin, V.A. Fedorov, Inorg. Mater. 36, 641 (2000)

    Article  Google Scholar 

  28. P. Aryal, Optical and Photovoltaic Properties of Copper Indium-gallium Diselenide Materials and Solar Cells. Ph.D. Dissertation, (University of Toledo, Toledo, OH, 2014)

    Google Scholar 

  29. S. Marsillac, V. Ranjan, K. Aryal, S. Little, Y. Erkaya, G. Rajan, P. Boland, D. Attygalle, P. Aryal, P. Pradhan, R.W. Collins, in Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 3–8 June 2012 (IEEE, New York NY, 2012), pp. 1492–1494

    Google Scholar 

  30. J. Li, M. Contreras, J. Scharf, M. Young, T.E. Furtak, R. Noufi, D. Levi, in Proceedings of the 39th IEEE Photovoltaic Specialists Conference, Tampa, FL, 16–21 June 2013 (IEEE, New York, NY, 2013), pp. 2609–2611

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas J. Podraza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, P. et al. (2018). Real Time Measurement, Monitoring, and Control of CuIn1−xGaxSe2 by Spectroscopic Ellipsometry. In: Fujiwara, H., Collins, R. (eds) Spectroscopic Ellipsometry for Photovoltaics. Springer Series in Optical Sciences, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-95138-6_6

Download citation

Publish with us

Policies and ethics