Skip to main content

Renewable Energy Sources as the Cornerstone of the German Energiewende

  • Chapter
  • First Online:
Energiewende "Made in Germany"

Abstract

At least since the 1980 study on the energiewende by Krause et al. (Energie-Wende: Wachstum und Wohlstand ohne Erdöl und Uran. Frankfurt am Main: S. Fischer), renewable energies have been considered a viable alternative to conventional fossil fuels, and renewable energy technologies were seen as a “soft path” towards a more sustainable energy system. The German government’s Energy Concept for 2050 declared the development of renewables as its number one energy priority. The share of renewables in primary energy consumption was to rise to above 60% by 2050 (2020: 18%, 2030: 30%, 2040: 45%) and targets for the share of renewables in electricity consumption were set even higher: at least 80% by 2050 (2020: 35%, 2030: 50%, 2040: 65%). Renewables have thus become a cornerstone of the current energiewende. This chapter discusses specific features of the German path toward a renewables-based electricity system and some challenges it is facing along the way. It also reports on the implications of a renewables-based electricity system for price formation and interrelations with conventional power plants. Section 6.2 recalls the development of renewables in Germany over the last 25 years from a niche source following the first feed-in law of 1990 to what has become Germany’s number one electricity source since 2014, contributing over one third of the total supply and leaving lignite, coal, natural gas, and nuclear behind. We also survey the employment impacts of renewables. In Section 6.3, we argue that a renewables-based electricity system works very differently than the previous conventional system, for example, with respect to price formation, the dominant weight of fixed costs, the disappearing wedge between “peak” and “base” load, and the increasing role of flexibility. Section 6.4 takes a look at the issue of costs in the renewables transformation of the energy system, both from an aggregate perspective and from the perspective of individual technologies. The section also compares the costs of renewables with conventional generation (coal and nuclear), taking a public economics perspective, considering, for instance, the external (social) costs. We find that the renewables-based energiewende is welfare-enhancing compared to the high social costs of the previous fossil and nuclear-based energy system. Section 6.5 concludes.

“I’d put my money on the sun and solar energy. What a source of power!I hope we don’t have to wait till oil and coal run out before we tackle that.”

Thomas Edison (late nineteenth century) (Quoted from James D. Newton (1987): Uncommon Friends: Life with Thomas Edison, Henry Ford, Harvey Firestone, Alexis Carrel, & Charles Lindbergh. San Diego: Harcourt Brace Jovanovich).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Renewable energies as a cornerstone of future energy supply“ (BMWi and BMU 2010, 7).

  2. 2.

    Introductory paragraphs 1 and 2 of the EEG 2005; according to the Energy law (EnWG 2005), the share of renewables should be “continuously rising” (§ 1).

  3. 3.

    Gesetz für den Vorrang Erneuerbarer Energien, March 29, 2000 (EEG 2000), Bundesgesetzblatt 2000, 13, p. 305.

  4. 4.

    Gesetz für den Vorrang Erneuerbarer Energien, July 21, 2004 (EEG 2004), Bundesgesetzblatt 2004, p. 1918.

  5. 5.

    Gesetz zur Neuregelung des Rechts der Erneuerbaren Energien im Strombereich und zur Änderung damit zusammenhängender Vorschriften, October 25, 2008 (EEG 2009), Bundesgesetzblatt 2008, 49, p. 2074.

  6. 6.

    Gesetz zur Neuregelung des Rechtsrahmens für die Förderung der Stromerzeugung aus erneuerbaren Energien, July 28, 2011 (EEG 2012), Bundesgesetzblatt 2011, 42, p. 1634, amended by the law of August 17, 2012, Bundesgesetzblatt 2012, 38, p. 1754.

  7. 7.

    Gesetz zur grundlegenden Reform des Erneuerbare-Energien-Gesetzes und zur Änderung weiterer Bestimmungen des Energiewirtschaftsrechts, July 21, 2014 (EEG 2014), Bundesgesetzblatt 2014, Part I, 2014, 33, p. 1066.

  8. 8.

    Gesetz zur Einführung von Ausschreibungen für Strom aus erneuerbaren Energien und zu weiteren Änderungen des Rechts der erneuerbaren Energien, October 13, 2016 (EEG 2017), Bundesgesetzblatt 2016, 49, p. 2258.

  9. 9.

    Source: Arbeitsgemeinschaft Energiebilanzen (AGEB). 2018. “Bruttostromerzeugung in Deutschland ab 1990 nach Energieträgern.” Arbeitsgemeinschaft Energiebilanzen e.V. February 2018. In parallel, a 2009 law on heat from renewables aimed at a share of 14% of renewables in energy consumption for heat (space heating and cooling, process heat, warm water).

  10. 10.

    BNetzA. 2017. “Bestätigung des Netzentwicklungsplans Strom für das Zieljahr 2030.” Bonn, Germany.

  11. 11.

    Dehnen, Nicola, Anselm Mattes, and Thure Traber. 2015. “Die Beschäftigungseffekte der Energiewende.” Berlin, Deutschland: DIW Econ.

  12. 12.

    BNetzA. 2017. “Bestätigung des Netzentwicklungsplans Strom für das Zieljahr 2030.” Bonn, Germany.

  13. 13.

    The scenario framework of the four TSOs, produced every 1–2 years in the context of the network development plan, provides a firm corridor for future developments. The exercise produces an outlook with three 2030 scenarios and one 2035 scenario calibrated to governmental objectives that establishes a “roadmap” not only for the subsequent network development plan but also for all of the stakeholders involved in the process.

  14. 14.

    For example, the vision of a 100% RES-based system sketched out by SRU (2011) relies on extensive exchanges with the neighbouring countries, mainly Scandinavia.

  15. 15.

    Assuming inelastic demand, the renewable electricity has thus reduced the annual electricity bill of wholesale consumers by 3.5 billion € (500 TWh × 0.7 cents/kWh).

  16. 16.

    Since 2016, EEX prices have somewhat recovered to about 40 EUR/MWh after the mothballing and shut-down of several conventional power plants.

  17. 17.

    The analysis of the residual load neglects on the one side possible trade with neighbouring countries, which might allow higher operational hours for lignite power plants. On the other side, must-run CHP generation and the variable character of wind and photovoltaics might favor more flexible conventional power plants.

  18. 18.

    In 2015, the reserve for the winter 2016/2017 was about 4 GW, contracted both in South Germany and in neighboring countries, mainly Austria.

  19. 19.

    In 2016, the strategic reserve contained about 5 GW of capacity, plus an additional 2 GW of capacity allocated explicitly to South Germany.

  20. 20.

    Insiders have reported that the rather liberal position favoring an energy-only market by RWE, the largest German utility, was eliminated with the decision adopted by the French Parliament (“Assemblée Nationale”) on December 18, 2012, to introduce a national capacity instrument (“tradable certificates“) that was originally supposed to benefit mainly the French incumbent EdF. As one of the most powerful companies within the energy industry, RWE contributed to the shift of the association toward a strong capacity instrument.

  21. 21.

    Boccard (2014) concludes “the future cost of nuclear power in France to be at least 76 €/MWh and possibly 117 €/MWh.”

  22. 22.

    See discussion in Hirschhausen (2017), and the survey paper by Wealer et al.(2018).

  23. 23.

    After the Fukushima nuclear disaster, EU Energy Commissioner Günther Oettinger recommended mandatory stress testing of European nuclear power plants. The results pointed to the urgent need for retrofits at some plants. A draft regulation will form the basis for the binding rules on liability and compulsory inspection routines to be introduced in all countries. See European Commission, Draft proposal for a Directive amending Nuclear Safety Directive IP/13/532, June 13, 2013. Francois Lévèque (2013, Nucléarie On/Off. Paris, Dunod, p. 171) provides the most intuitive explanation of why the civil use of nuclear power cannot be considered an economical energy alternative: “Nuclear power is the child of science and the military” (“L`énergie atomique est la fille de la science et de la guerre”), own translation.

References

  • Agora Energiewende. 2013. 12 Insights on Germany’s Energiewende. A discussion paper exploring key challenges for the power sector, Berlin.

    Google Scholar 

  • Thorsten Beckers, and Albert Hoffrichter. 2014. Grundsätzliche und aktuelle Fragen des institutionellen Stromsektordesigns – Eine institutionenökonomische Analyse zur Bereitstellung und Refinanzierung von Erzeugungsanlagen mit Fokus auf FEE.

    Google Scholar 

  • BMU. 2012. Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global. Schlussbericht BMU-FKZ 03MAP146. Stuttgart: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart Institut für Technische Thermodynamik,Fraunhofer Institut (IWES), Kassel Ingenieurbüro für neue Energien (IFNE).

    Google Scholar 

  • BMWi, and BMU. 2010. Energy Concept – for an Environmentally Sound, Reliable and Affordable Energy Supply. Berlin.

    Google Scholar 

  • Boccard, Nicolas. 2014. The cost of nuclear electricity: France after Fukushima. Energy Policy 66 (March): 450–461.

    Article  Google Scholar 

  • Cramton, Peter, and Axel Ockenfels. 2011. Economics and Design of Capacity Markets for the Power Sector. Maryland: University of Maryland, University of Cologne.

    Google Scholar 

  • Cramton, Peter, and Steven Stoft. 2005. A Capacity Market that Makes Sense. The Electricity Journal 18 (7): 43–54.

    Article  Google Scholar 

  • Deutsch, Matthias, and Patrick Graichen. 2015. What If… There Were a Nationwide Rollout of PV Battery Systems? Berlin: Agora Energiewende.

    Google Scholar 

  • EC. 2011. Energy Roadmap 2050. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels: European Commission.

    Google Scholar 

  • Energiewirtschaftsgesetz vom 7. 2005 Juli. (BGBl. I S. 1970, 3621), das zuletzt durch Artikel 2 Absatz 6 desGesetzes vom 20. Juli 2017 (BGBl. I S. 2808, 2018 I 472) geändert worden ist. https://www.gesetze-im-internet.de/enwg_2005/EnWG.pdf

  • EWI. 2012. Der Merit-Order-Effekt der erneuerbaren Energien – Analyse der kurzen und langen Frist. Energiewirtschaftliches Institut an der Universität Köln

    Google Scholar 

  • Johanna Cludius, Hauke Hermann, and Felix Chr. Matthes. 2013. The merit order effect of wind and photovoltaic electricity generation in Germany 2008-2012. CEEM Working Paper 3-2013. http://ceem.unsw.edu.au/sites/default/files/documents/CEEM%20%282013%29%20-%20MeritOrderEffect_GER_20082012_FINAL.pdf

  • Krause, Florentin, Hartmut Bossel, and Karl-Friedrich Müller-Reissmann. 1980. In Energie-Wende: Wachstum und Wohlstand ohne Erdöl und Uran, ed. Öko-Institut Freiburg. Frankfurt am Main: S. Fischer.

    Google Scholar 

  • Küchler, Swantje, and Rupert Wronski. 2015. Was Strom wirklich kostet: Vergleich der staatlichen Förderungen und gesamtgesellschaftlichen Kosten von konventionellen und erneuerbaren Energien. Berlin, Germany: Forum Ökologisch-Soziale Marktwirtschaft e.V.

    Google Scholar 

  • Matthes, Felix, Ben Schlemmermeier, Carsten Diermann, Hauke Hermann, and Christian von Hammerstein. 2012. Fokussierte Kapazitätsmärkte. Ein neues Marktdesign für den Übergang zu einem neuen Energiesystem. Studie für die Umweltstiftung WWF Deutschland. Berlin: Öko-Institut e.V. - LBD-Beratungsgesellschaft mbH - RAUE LLP.

    Google Scholar 

  • Morris, Craig, and Martin Pehnt. 2016. Energy Transition: The German Energiewende. An initiative of the Heinrich Böll Foundation. First Released in November 2012, Revised in July 2016, Berlin.

    Google Scholar 

  • Neuhoff, Karsten, Jochen Diekmann, Clemens Gerbaulet, et al. 2013. Energiewende und Versorgungssicherheit: Deutschland braucht keinen Kapazitätsmarkt. DIW Wochenbericht 80 (48): 3–4.

    Google Scholar 

  • Nitsch, Joachim. 2016. Die Energiewende nach COP 21 – Aktuelle Szenarien der deutschen Energieversorgung. Kurzstudie für den Bundesverband Erneuerbare Energien e.V. Langversion, Stuttgart.

    Google Scholar 

  • Oei, Pao-Yu, Clemens Gerbaulet, Claudia Kemfert, Friedrich Kunz, Felix Reitz, and Christian von Hirschhausen. 2015. Effektive CO 2 -Minderung im Stromsektor: Klima-, Preis- und Beschäftigungseffekte des Klimabeitrags und alternativer Instrumente. 98. Politikberatung kompakt. Berlin: DIW.

    Google Scholar 

  • Oeko-Institut. 2016. Projected EEG Costs up to 2035: Impacts of Expanding Renewable Energy According to the Long-Term Targets of the Energiewende. Berlin: Study for Agora Energiewende.

    Google Scholar 

  • Sensfuß, F, and Ragwitz, M. 2007. Analyse des Preiseffektes der Stromerzeugung aus erneuerbaren Energien auf die Börsenpreise im deutschen Stromhandel – Analyse für das Jahr 2006/Gutachten des Frauenhofer Instituts für System- und Innovationsforschung für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. (Forschungsbericht)

    Google Scholar 

  • Sensfuß, F. 2011. Analysen zum Merit-Order Effekt erneuerbarer Energien Update für das Jahr 2010 Karlsruhe, 4. November 2011 Frauenhofer ISI. https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/Gutachten/analysen-merit-order-effekt.pdf?__blob=publicationFile&v=2

  • Speth, V, and Klein, A. 2012. The impact of different wind and solar portfolios on spot market prices – a market model. Proceedings of 11th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Lisbon, Portugal, 13–15 November 2012.

    Google Scholar 

  • Speth, V, and Warzecha, J. 2012. The impact of wind and solar on peak and off-peak prices – evidence from two year price analysis. 12th IAEE European Energy Conference, Venice.

    Google Scholar 

  • SRU. 2011. Pathways towards a 100% Renewable Electricity System. Special report. Berlin: Sachverständigenrat für Umweltfragen.

    Google Scholar 

  • ———. 2017. Start Coal Phaseout Now. Berlin: German Advisory Council on the Environment.

    Google Scholar 

  • Toke, David. 2012. Nuclear Power: How Competitive Is It under Electricity Market Reform? Presentation given at the HEEDnet seminar presented at the HEEDnet Seminar, London, July 17.

    Google Scholar 

  • Traber, T. Kemfert, C. Diekmann, J. 2011. Strompreise: Künftig nur noch geringe Erhöhung durch erneuerbare Energien DIW Wochenbericht 6/2011. https://www.diw.de/sixcms/detail.php?id=diw_01.c.455270.de

  • Hirschhausen, Christian von. 2017. Nuclear Power in the 21st Century – An Assessment (Part I). DIW discussion paper 1700, Berlin.

    Google Scholar 

  • Vereinigung der Bayerischen Wirtschaft e.V. Kosten des Ausbaus der erneuerbaren Energien. 2011. http://www.baypapier.com/fileadmin/user_upload/Downloads/Standpunkte/Studie_Kosten_Erneuerbare_Energien.pdf

  • Wealer, Ben, Clemens Gerbaulet, Claudia Kemfert, and Christian von Hirschhausen. 2018. Cost Estimates and Economics of Nuclear Power Plant Newbuild: Literature Survey and Some Modelling Analysis. Presented at the 41 st IAEE International Conference, Groningen, NL, June 11.

    Google Scholar 

  • Weigt, Hannes. 2009. Germany’s wind energy: The potential for fossil capacity replacement and cost saving. Applied Energy 86: 1857–1863. https://doi.org/10.1016/j.apenergy.2008.11.031.

    Article  Google Scholar 

  • Weigt, Hannes, and Florian Leuthold. 2010. Experience with renewable energy policy in Germany. In Harnessing Renewable Energy in Electric Power Systems: Theory, Practice, Policy, ed. Boaz Moselle, Jorge Padilla, and Richard Schmalensee. Washington, DC: RFF Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Egerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egerer, J., Oei, PY., Lorenz, C. (2018). Renewable Energy Sources as the Cornerstone of the German Energiewende. In: von Hirschhausen, C., Gerbaulet, C., Kemfert, C., Lorenz, C., Oei, PY. (eds) Energiewende "Made in Germany". Springer, Cham. https://doi.org/10.1007/978-3-319-95126-3_6

Download citation

Publish with us

Policies and ethics