Skip to main content

The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective

  • Chapter
  • First Online:

Abstract

Crop wild relatives (CWR) can provide important resources for the genetic improvement of cultivated species. Because crops are often related to many wild species and because exploration of CWR for useful traits can take many years and substantial resources, the categorization of CWR based on a comprehensive assessment of their potential for use is an important knowledge foundation for breeding programs. The initial approach for categorizing CWR was based on crossing studies to empirically establish which species were interfertile with the crop. The foundational concept of distinct gene pools published almost 50 years ago was developed from these observations. However, the task of experimentally assessing all potential CWR proved too vast; therefore, proxies based on phylogenetic and other advanced scientific information have been explored. A current major approach to categorize CWR aims to comprehensively synthesize experimental data, taxonomic information, and phylogenetic studies. This approach very often ends up relying not only on the synthesis of data but also intuition and expert opinion and is therefore difficult to apply widely in a reproducible manner. Here, we explore the potential for a stronger standardization of the categorization method, with focus on evolutionary relationships among species combined with information on patterns of interfertility between species. Evolutionary relationships can be revealed with increasing resolution via next-generation sequencing, through the application of the multispecies coalescent model and using focused analyses on species discovery and delimitation that bridge population genetics and phylogenetics fields. Evolutionary studies of reproductive isolation can inform the understanding of patterns of interfertility in plants. For CWR, prezygotic postpollination reproductive barriers and intrinsic postzygotic barriers are the most important factors and determine the probability of producing viable and fertile offspring. To further the assessment of CWR for use in plant breeding, we present observed and predicted gene pool indices. The observed index quantifies patterns of interfertility based on fertilization success, seed production, offspring viability, and hybrid fertility. The predicted gene pool index requires further development of the understanding of quantitative and qualitative relationships between reproductive barriers, measures of genetic relatedness, and other relevant characteristics for crops and their wild relatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acquadro A, Barchi L, Gramazio P, Portis E, Vilanova S, Comino C, Plazas M, Prohens J, Lanteri S (2017) Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS One 12:e0180774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert VA, Barbazuk WB, Der JP, Leebens-Mack J, Ma H, Palmer JD, Rounsley S et al (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089

    Article  CAS  Google Scholar 

  • Aubriot X, Paramjit S, Knapp S (2016) Tropical Asian species show that the old world clade of ‘spiny solanums’ (Solanum subgenus Leptostemonum pro parte: Solanaceae) is not monophyletic. Bot J Linn Soc 181:199–223

    Article  Google Scholar 

  • Austin DF (1978) The Ipomoea batatas complex-I. Taxonomy. Bull Torrey Bot Club 1:114–129

    Article  Google Scholar 

  • Austin DF (1997) Dissolution of Ipomoea series Anisomerae (Convolvulaceae). Taxon 28:359–361

    Article  Google Scholar 

  • Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D (2015) The origins of reproductive isolation in plants. New Phytol 207:968–984

    Article  PubMed  Google Scholar 

  • Barrett CF, Freudenstein JV (2011) An integrative approach to delimiting species in a rare but widespread mycoheterotrophic orchid. Mol Ecol 20:2771–2786

    Article  PubMed  Google Scholar 

  • Bohs L (1991) Crossing studies in Cyphomandra (Solanaceae) and their systematic and evolutionary significance. Am J Bot 78:1683–1693

    Article  Google Scholar 

  • Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C, Nauluvula P (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34:562–570

    Article  CAS  PubMed  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Buddenhagen C, Lemmon AR, Lemmon EM, Bruhl J, Cappa J, Clement WL, Donoghue M et al. (2016) Anchored phylogenomics of angiosperms I: assessing the robustness of phylogenetic estimates. bioRxiv:086298

    Google Scholar 

  • Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:369–4383

    Google Scholar 

  • Chen Z, Zhao N, Li S, Grover CE, Nie H, Wendel JF, Hua J (2017) Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit Rev Plant Sci 36:55–69

    Article  Google Scholar 

  • Comer JR, Zomlefer WB, Barrett CF, Stevenson DW, Heyduk K, Leebens-Mack JH (2016) Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae). Mol Phylogenet Evol 97:32–42

    Article  PubMed  Google Scholar 

  • Coyne JA, Orr HA (1989) Patterns of speciation in Drosophila. Evolution 43:362–381

    Article  PubMed  Google Scholar 

  • Coyne JA, Orr HA (1997) Patterns of speciation in Drosophila revisited. Evolution 51:295

    Article  PubMed  Google Scholar 

  • Coyne JA, Orr HA (1998) The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci 353:287–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Queiroz K (2005) Ernst Mayr and the modern concept of species. Proc Natl Acad Sci 102:6600–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340

    Article  PubMed  Google Scholar 

  • Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Müller JV, Toll J (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sust Food 38:369–377

    Article  Google Scholar 

  • Diaz J, Schmiediche P, Austin DF (1996) Polygon of crossability between eleven species of Ipomoea: section Batatas (Convolvulaceae). Euphytica 88:189–200

    Article  Google Scholar 

  • Donoghue MJ (1985) A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88:172–181

    Article  Google Scholar 

  • Duarte JM, Wall PK, Edger PP, Landherr LL, Ma H, Pires PK, Leebens-Mack J (2010) Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol Biol 10:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan TM, Rausher MD (2013a) Evolution of the selfing syndrome in Ipomoea. Front Plant Sci 4:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan TM, Rausher MD (2013b) Morphological and genetic differentiation and reproductive isolation among closely related taxa in the Ipomoea series Batatas. Am J Bot 100:2183–2193

    Article  PubMed  Google Scholar 

  • Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63:1–19

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Eserman LA (2012) Taxonomy and crossing relationships in a small group of morning glories (Ipomoea section Pharbitis). Master thesis, Southeastern Louisiana University

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 61:717–726

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27:480–488

    Article  PubMed  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University, New York

    Google Scholar 

  • Grover CE, Gallagher JP, Jareczek JJ, Page JT, Udall JA, Gore MA, Wendel JF (2015) Reevaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol 92:45–52

    Article  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hardigan MA, Bamberg J, Buell CR, Douches DS (2015) Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. Petota. Plant Genome 8:1–16

    Article  CAS  Google Scholar 

  • Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  CAS  PubMed  Google Scholar 

  • Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21:447–450

    Article  PubMed  Google Scholar 

  • Heyduk K, Trapnell DW, Barrett CF, Leebens-Mack J (2015) Phylogenomic analyses of species relationships in the genus Sabal (Arecaceae) using targeted sequence capture. Biol J Linn Soc 117:106–120

    Article  Google Scholar 

  • Heyduk K, Stephens JD, Faircloth BC, Glenn TC (2016) Targeted DNA region re-sequencing. In: Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing. Springer International Publishing, Cham, pp 43–68

    Chapter  Google Scholar 

  • Hirsch CD, Evans J, Buell CR, Hirsch CN (2014) Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes. Brief Funct Genomics 13:257–267

    Article  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  CAS  Google Scholar 

  • Jansky S (2006) Overcoming hybridization barriers in potato. Plant Breed 125:1–12

    Article  Google Scholar 

  • Kay KM, Reeves PA, Olmstead RG, Schemske DW (2005) Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences. Am J Bot 92:1899–1910

    Article  CAS  PubMed  Google Scholar 

  • Khoury CK, Heider B, Castañeda-Álvarez NP, Achicanoy HA, Sosa CC, Miller RE, Scotland RW, Wood JR, Rossel G, Eserman LA, Jarret RL (2015) Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweet potato [Ipomoea batatas (L.) Lam., I. series Batatas]. Frontiers in. Plant Sci 6:251

    Google Scholar 

  • Kostyun JL, Moyle LC (2017) Multiple strong postmating and intrinsic postzygotic reproductive barriers isolate florally diverse species of Jaltomata (Solanaceae). Evolution 6:1556–1571

    Article  Google Scholar 

  • Lafon-Placette C, Köhler C (2016) Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers. Mol Ecol 25:2620–2629

    Article  PubMed  Google Scholar 

  • Lemmon EM, Lemmon AR (2013) High-throughput genomic data in systematics and phylogenetics. Annu Rev Ecol Evol Syst 44:99–121

    Article  Google Scholar 

  • Lerner HRL, Mindell DP (2005) Phylogeny of eagles, old world vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Mol Phylogenet Evol 37:327–346

    Article  CAS  PubMed  Google Scholar 

  • Levin DA (1979) The nature of plant species. Science 204:381–384

    Article  CAS  PubMed  Google Scholar 

  • Levin RA, Myers NR, Bohs L (2006) Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am J Bot 93:157–169

    Article  CAS  Google Scholar 

  • Liu L, Yu L, Pearl DK, Edwards SV (2009) Estimating species phylogenies using coalescence times among sequences. Syst Biol 58:468–477

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yu L, Edwards SV (2010) A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evol Biol 10:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wu S, Yu L (2015) Coalescent methods for estimating species trees from phylogenomic data. J Syst Evol 53:380–390

    Article  Google Scholar 

  • Lowry DB, Modliszewski JL, Wright KM, Wu CA, Willis JH (2008) The strength and genetic basis of reproductive isolating barriers in flowering plants. Philosophical Transactions of the Royal Society of London B: Biological Sciences 363:3009–3021

    Article  PubMed  PubMed Central  Google Scholar 

  • Luckow M (1995) Species concepts: assumptions, methods, and applications. Syst Bot 20:589–605

    Article  Google Scholar 

  • Mandel JR, Dikow RB, Funk VA, Masalia RR, Staton SE, Kozik A, Michelmore RW, Rieseberg LH, Burke JM (2014) A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. Applications in Plant Sciences 2:1300085

    Article  Google Scholar 

  • Martin NH, Willis JH (2007) Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61:68–82

    Article  PubMed  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S et al (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the Origin of Species. Columbia University Press, New York

    Google Scholar 

  • McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66:526–538

    Article  CAS  PubMed  Google Scholar 

  • Mendelson TC (2003) Sexual isolation evolves faster than hybrid inviability in a diverse and sexually dimorphic genus of fish (Percidae:Etheostoma). Evolution 57:317–327

    Article  PubMed  Google Scholar 

  • Mirarab S, Warnow T (2015) ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31:i44–i52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    Article  CAS  Google Scholar 

  • Moyle LC, Olson MS, Tiffin P (2004) Patterns of reproductive isolation in three angiosperm genera. Evolution 58:1195–1208

    Article  PubMed  Google Scholar 

  • Nordborg M (2001) Coalescent theory. Handbook of Statistical Genetics, John Wiley and Sons, Chichester

    Google Scholar 

  • O’Meara BC (2009) New heuristic methods for joint species delimitation and species tree inference. Syst Biol 59:59–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Pease JB, Guerrero RF, Sherman NA, Hahn MW, Moyle LC (2016) Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis. Mol Ecol 25:2592–2608

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393

    Article  PubMed  Google Scholar 

  • Plazas M, Vilanova S, Gramazio P, Rodríguez-Burruezo A, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H, Kouassi B (2016) Interspecific hybridization between eggplant and wild relatives from different genepools. J Am Soc Hortic Sci 141:34–44

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ, Fita A et al (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213:158

    Article  Google Scholar 

  • Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Rannala B, Yang Z (2017) Efficient Bayesian species tree inference under the multispecies coalescent. Syst Biol 66:823–842

    Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    Article  PubMed  Google Scholar 

  • Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3:380–390

    Article  CAS  PubMed  Google Scholar 

  • Small E (1984) Hybridization in the domesticated-weed-wild complex. In: Grant WF (ed) Plant biosystematics. Academic Press, Toronto, pp 195–210

    Chapter  Google Scholar 

  • Smith SD, Baum DA (2007) Systematics of Iochrominae (Solanaceae): patterns in floral diversity and interspecific crossability. Acta Hortic 745:241–254

    Article  Google Scholar 

  • Soltis DE, Gitzendanner MA, Stull G, Chester M, Chanderbali A, Chamala S, Jordon-Thaden I, Soltis PS, Schnable PS, Barbazuk WB (2013) The potential of genomics in plant systematics. Taxon 62:886–898

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia Biological Series, New York

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc R Soc Lond B Biol Sci 268:861–867

    Article  CAS  Google Scholar 

  • Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. Genetics 176:1059–1088

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdcourt B (1963) Convolvulaceae. In: Hubbard CE, Readhead E (eds) Flora of Tropical East Africa. Whitefriars Press, London, pp 1–161

    Google Scholar 

  • Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP, Guarino L, Eastwood R, Leόn B, Maxted N (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275

    Article  Google Scholar 

  • Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny Solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173:176–193

    Article  Google Scholar 

  • Wakeley J (2009) Coalescent theory: an introduction. Roberts and Company, Greenwood Village

    Google Scholar 

  • Wakeley J (2013) Coalescent theory has many new branches. Theor Popul Biol 87:1

    Article  PubMed  Google Scholar 

  • Weese TL, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae). Syst Bot 32:445–463

    Article  Google Scholar 

  • Weitemier K, Straub SC, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A (2014) Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl Plant Sci 2:1400042

    Article  Google Scholar 

  • Wiens JJ (2007) Species delimitation: new approaches for discovering diversity. Syst Biol 56:875–878

    Article  PubMed  Google Scholar 

  • Wiens JJ, Servedio MR (2000) Species delimitation in systematics: inferring diagnostic differences between species. Proc R Soc B 267:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiersema JH, León B (2016) The GRIN taxonomy crop wild relative inventory. Enhancing crop Genepool use: capturing wild relative and landrace diversity for crop improvement, CAB International, p 453

    Google Scholar 

  • Wood JR, Carine MA, Harris D, Wilkin P, Williams B, Scotland RW (2015) Ipomoea (Convolvulaceae) in Bolivia. Kew Bull 70:31

    Article  Google Scholar 

  • Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci U S A 107:9264–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimin AV, Puiu D, Hall R, Kingan S, Salzberg SL (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Giga Science 6:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, R.E., Khoury, C.K. (2018). The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective. In: Greene, S., Williams, K., Khoury, C., Kantar, M., Marek, L. (eds) North American Crop Wild Relatives, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-95101-0_6

Download citation

Publish with us

Policies and ethics