Skip to main content

Context Analysis Using a Bayesian Normal Graph

  • Chapter
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 102))

Abstract

Contextual information can be used to help object detection in video and images, or to categorize text. In this work we demonstrate how the Latent Variable Model, expressed as a Factor Graph in Reduced Normal Form, can manage contextual information to support a scene understanding task. In an unsupervised scenario our model learns how various objects can coexist, by associating object variables to a latent Bayesian cluster. The model, that is implemented using probabilistic message propagation, can be used to correct or to assign labels to new images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oliva, A., Torralba, A.: The role of context in object recognition. Trends Cogn. Sci. 11, 520–527 (2007)

    Article  Google Scholar 

  2. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R., Yuille, A.: The role of context for object detection and semantic segmentation in the wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 891–898 (2014)

    Google Scholar 

  3. Torralba, A.: Contextual priming for object detection. Int. J. Comput. Vis. 53(2), 169–191 (2003)

    Article  MathSciNet  Google Scholar 

  4. Jin, Y., Geman, S.: Context and hierarchy in a probabilistic image model. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 2145–2152 (2006)

    Google Scholar 

  5. Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-occurrence, location and appearance. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008. pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Heitz, G., Koller, D.: Learning Spatial Context: Using Stuff to Find Things, pp. 30–43. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  7. Yao, B., Li, F.: Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1691–1703 (2012)

    Article  Google Scholar 

  8. Murphy, K.P.: Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series). The MIT Press (2012)

    Google Scholar 

  9. Choi, J.M., Torralba, A., Willsky, A.S.: A tree.based context model for object recognition. IEEE Trans. 34, 240–252 (2012)

    Google Scholar 

  10. Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: CoRR, vol. abs/1405.0312 (2014)

    Google Scholar 

  11. Loeliger, H.A.: An introduction to factor graphs. IEEE Signal Process. Mag. vol. 21, pp. 28–41 (2004)

    Article  Google Scholar 

  12. Palmieri, F.A.N.: A comparison of algorithms for learning hidden variables in bayesian factor graphs in reduced normal form. IEEE Trans. Neural Netw. Learn. Syst. 27, 2242–2255 (2016)

    Article  MathSciNet  Google Scholar 

  13. Buonanno, A., Palmieri, F.A.N.: Simulink implementation of belief propagation in normal factor graphs. In: Proceedings of the 24th Workshop on Neural Networks, WIRN 2014, May 15–16, Vietri sul Mare, Salerno, Italy (2014)

    Google Scholar 

  14. Buonanno, A., Palmieri, F.A.N.: Towards building deep networks with bayesian factor graphs (2015). http://arxiv.org/abs/1502.04492

  15. Buonanno, A., Palmieri, F.A.N.: Two-dimensional multi-layer factor graphs in reduced normal form. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN2015, July 12–17, 2015, Killarney, Ireland (2015)

    Google Scholar 

  16. Kschischang, F.R., Frey, B., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47, 498–519 (2001)

    Article  MathSciNet  Google Scholar 

  17. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  18. Palmieri, F.A.N., Buonanno, A.: Discrete independent component analysis (dica) with belief propagation. In: Proceedings of IEEE Machine Learning for Signal Procesing Conference, MLSP2015, Sept. 17–20, Boston, US (2015)

    Google Scholar 

  19. Buonanno, A., di Grazia, L., Palmieri, F.A.N.: Bayesian clustering on images with factor graphs in reduced normal form. In: Proceedings of the 25th Workshop on Neural Networks, WIRN 2015, May 20–22, Vietri sul Mare, Salerno, Italy (2015)

    Google Scholar 

  20. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Buonanno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buonanno, A., Iadicicco, P., Di Gennaro, G., Palmieri, F.A.N. (2019). Context Analysis Using a Bayesian Normal Graph. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Advances in Processing Nonlinear Dynamic Signals. WIRN 2017 2017. Smart Innovation, Systems and Technologies, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-319-95098-3_8

Download citation

Publish with us

Policies and ethics