Skip to main content

Energy Absorption Characteristics of Graded Foams Subjected to High Velocity Loading

  • Conference paper
  • First Online:
Book cover Dynamic Behavior of Materials, Volume 1

Abstract

In this study the effect of layer stacking arrangement on the energy absorption characteristics of density-graded cellular polymers subjected to high velocity impact is investigated experimentally. Dynamic loading is performed using Split Hopkinson Pressure Bar (SHPB) which is also modified for a direct impact experiment. Different bulk density polymeric foam layers are bonded together in different stacking arrangements and subjected to impact loading. Ultra-high speed imaging is implemented to measure the deformation and observe the formation and propagation of compaction waves during direct impact. The effect of the orientation of the discrete layers on the dynamic stress-strain response is analyzed using digital image correlation (DIC). The effects of material compressibility are implemented to the analysis. The approach uses DIC to calculate the full-field acceleration and material density, later used to determine the stress gradients developed in the material. The best arrangement of layer structure is chosen by the highest energy absorption characteristics measured. Failure mechanisms associated with energy dissipation in graded materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciu, L., Kiernan, S., Gilchrist, M.: Designing the energy absorption capacity of functionally graded foam materials. Mater Sci Eng A. 507, 215–225 (2009)

    Article  Google Scholar 

  2. Kiernan, S., Cui, L., Gilchrist, M.: Propagation of a stress wave through a virtual functionally graded foam. Int J Non Linear Mech. 44, 456–468 (2009)

    Article  Google Scholar 

  3. Koohbor B, Ravindran S, Kidane A. Impact response of density graded cellular polymers

    Google Scholar 

  4. Kiernan, S., Cui, L., Gilchrist, M.: A numerical investigation of the dynamic behavior of functionally graded foams. In: IUTAM Symposium on Multi-Functional Material Structures and Systems. Springer, Dordrecht (2010)

    Google Scholar 

  5. Koohbor, B., Kidane, A., Lu, W.: Effect of specimen size, compressibility and inertia on the response of rigid polymer foams subjected to high velocity direct impact loading. Int J Impact Eng. 98, 62–74 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The financial support of US Army Research Office with grant number W911NF-17-S-0002 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail Wohlford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wohlford, A., Ravindran, S., Kidane, A. (2019). Energy Absorption Characteristics of Graded Foams Subjected to High Velocity Loading. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics