Skip to main content

A Novel Auxetic Structure with Enhanced Impact Performance by Means of Periodic Tessellation with Variable Poisson’s Ratio

  • Conference paper
  • First Online:
Book cover Dynamic Behavior of Materials, Volume 1

Abstract

This study proposes a new approach to designing impact resistant elastomeric structures using innovative bi-dimensional patterns composed of a combination of circular and elliptical voids with variable aspect ratios. Key to the design are discrete sections each with different effective Poisson’s ratios ranging from negative to positive. Cubic samples 80 × 80 × 80 cm in size with different void geometry and effective Poisson’s ratios were fabricated and successively tested under compressive and low-velocity impact loads as a proof-of-concept, showing good agreement with finite element simulations.

The numerical comparisons for different porosity levels demonstrated that the variable Poisson’s ratio materials resulted in better impact responses compared to those characterized by a positive (constant) value of the effective Poisson’s ratio. The promising results also show that the variable shape of the voids can lead to a modular trigger of overall effective auxetic behavior, opening up new ways design and use auxetic macro-structures with variable porosity and variable Poisson’s ratio for a wide range of applications and, in particular, for impact and protecting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, vol. 7. Pergamon Press, Oxford (1970)

    MATH  Google Scholar 

  2. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  3. Ashby, M.F., Jones, D.R.H.: Engineering Materials 1: an Introduction to their Properties and Applications. Butterworth Heinemann, Oxford (1996)

    Google Scholar 

  4. Lakes, R.: Advances in negative Poisson’s ratio materials. Adv. Mater. 5, 293–296 (1993)

    Article  Google Scholar 

  5. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Article  Google Scholar 

  6. Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)

    Article  Google Scholar 

  7. Stavroulakis, G.E.: Auxetic behaviour: appearance and engineering applications. Phys. Status Solidi B. 242(3), 710–720 (2005)

    Article  Google Scholar 

  8. Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking. Adv. Mater. 12(9), 617–628 (2000)

    Article  Google Scholar 

  9. Javid, F., Liu, J., Rafsanjani, A., Schaenzer, M., Pham, M.Q., Backman, D., Yandt, S., Innes, M.C., Booth-Morrison, C., Gerendas, M., Scarinci, T., Shanian, A., Bertoldi, K.: On the design of porous structures with enhanced fatigue life. Extreme Mech. Lett. 16, 13–17 (2017)

    Article  Google Scholar 

  10. Wojciechowski, K.W., Branka, A.C.: Negative Poisson ratio in a two-dimensional “isotropic” solid. Phys. Rev. Lett. A. 40, 7222–7225 (1989)

    Article  Google Scholar 

  11. Lakes, R.S., Lowe, A.: Negative Poisson’s ratio foam as seat cushion material. Cell. Polym. 19, 157–167 (2000)

    Google Scholar 

  12. Lakes, R.: Foam structures with a negative Poisson’s ratio. Science. 235, 1038–1040 (1987)

    Article  Google Scholar 

  13. Scarpa, F., Giacomin, J., Zhang, Y., Pastorino, P.: Mechanical performance of auxetic polyurethane foam for antivibration glove applications. Cell. Polym. 24(5), 1–16 (2005)

    Google Scholar 

  14. Bianchi, M., Scarpa, F.L., Smith, C.W.: Stiffness and energy dissipation in polyurethane auxetic foams. J. Mater. Sci. 43(17), 5851–5860 (2008)

    Article  Google Scholar 

  15. Chan, N., Evans, K.E.: Fabrication methods for auxetic foams. J Mater Sci. 32(22), 5945–5953 (1997)

    Article  Google Scholar 

  16. Chan, N., Evans, K.E.: Microscopic examination of the microstructure and deformation of conventional and auxetic foams. J. Mater. Sci. 32(21), 5725–5736 (1997)

    Article  Google Scholar 

  17. Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22(3), 361–366 (2010)

    Article  Google Scholar 

  18. Kureta, R., Kanno, Y.: A mixed integer programming approach to designing periodic frame structures with negative Poisson’s ratio. Optim. Eng. 15(3), 773–800 (2014)

    Article  MathSciNet  Google Scholar 

  19. Wojciechowski, K.W.: Two-dimensional isotropic system with a negative Poisson ratio. Phys. Lett. A. 137(1–2), 60–64 (1989)

    Article  Google Scholar 

  20. Shim, J., Perdigou, C., Chen, E.R., Bertoldi, K., Reis, P.M.: Buckling-induced encapsulation of structured elastic shells under pressure. Proc. Natl. Acad. Sci. U. S. A. 109, 5978–5983 (2012)

    Article  Google Scholar 

  21. Taylor, M., Francesconi, L., Gerendás, M., Shanian, A., Carson, C., Bertoldi, K.: Low porosity metallic periodic structures with negative poisson's ratio. Adv. Mater. 26(15), 2365–2370 (2013)

    Article  Google Scholar 

  22. Milstein, F., Huang, K.: Existence of a negative Poisson ratio in fcc crystals. Phys. Rev. B. 19, 2030–2033 (1979)

    Article  Google Scholar 

  23. Ravirala, N., Alderson, A., Alderson, K.L., Davies, P.J.: Auxetic polypropylene films. Polym. Eng. Sci. 45(4), 517–528 (2005)

    Article  Google Scholar 

  24. Grima, J.N., Jackson, R., Alderson, A., Evans, K.E.: Do zeolites have negative Poisson’s ratios? Adv. Mater. 12(24), 1912–1918 (2000)

    Article  Google Scholar 

  25. Herakovich, C.T.: Composite laminates with negative through-the-thickness Poisson’s ratios. J. Compos. Mater. 18(5), 447–455 (1984)

    Article  Google Scholar 

  26. Doyoyo, M., Wan Hu, J.: Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads. J. Mech. Phys. Solids. 54(7), 1479–1492 (2006)

    Article  Google Scholar 

  27. Ali, M.N., Rehman, I.U.: An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis. J. Mater. Sci. Mater. Med. 22(11), 2573–2581 (2011)

    Article  Google Scholar 

  28. Caddock, B.D., Evans, K.E.: Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses. Biomaterials. 16, 1109–1115 (1995)

    Article  Google Scholar 

  29. Dolla, W.J.S., Fricke, B.A., Becker, B.R.: Structural and drug diffusion models of conventional and Auxetic drug-eluting stents. J Med Devices. 1, 47–55 (2007)

    Article  Google Scholar 

  30. Alderson, A., Rasburn, J., Evans, K.E., Grima, J.N.: Auxetic polymeric filters display enhanced de-fouling and pressure- compensation properties. Membr. Technol. 137, 6–8 (2001)

    Article  Google Scholar 

  31. Alderson, A., Alderson, K.: Expanding materials and applications: exploiting auxetic textiles. Tech. Text. 14, 29–34 (2005)

    Google Scholar 

  32. Ellul, B., Muscat, M., Grima, J.N.: On the effect of the Poisson’s ratio (positive and negative) on the stability of pressure vessel heads. Phys. Status Solidi B. 246(9), 2025–2032 (2009)

    Article  Google Scholar 

  33. Francesconi, L., Taylor, M., Bertoldi, K.: Baldi, static and modal analysis of low porosity thin metallic Auxetic structures using speckle interferometry and digital image correlation. Exp. Mech. 58(2), 283–300 (2018)

    Article  Google Scholar 

  34. Grima, J.N., Evans, K.E.: Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 19(17), 1563–1565 (2000)

    Article  Google Scholar 

  35. Grima, J., Gatt, R.: Perforated sheets exhibiting negative poisson’s ratios. Adv. Eng. Mater. 12, 460–464 (2010)

    Article  Google Scholar 

  36. Sanami, M., Ravirala, N., Alderson, K., Alderson, A.: Auxetic materials for sports applications. Procedia Eng. 72, 453–458 (2014)

    Article  Google Scholar 

  37. Wan, H., Ohtaki, H., Kotosaka, S., Hu, G.: A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model, European journal of mechanics. Eur. J. Mech. A. Solids. 23(1), 95–106 (2004)

    Article  Google Scholar 

  38. Scarpa, F., Panayiotou, P., Tomlinson, G.: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J. Strain Anal. Eng. Des. 35(5), 383–388 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taylor, M., Francesconi, L., Baldi, A., Liang, X., Aymerich, F. (2019). A Novel Auxetic Structure with Enhanced Impact Performance by Means of Periodic Tessellation with Variable Poisson’s Ratio. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics