Skip to main content

Improved Richtmyer-Meshkov Instability Experiments for Very-High-Rate Strength and Application to Tantalum

  • Conference paper
  • First Online:
Book cover Dynamic Behavior of Materials, Volume 1

Abstract

Recently, Richtmyer-Meshkov instabilities (RMI) have been used for studying metal strength at strain rates up to at least 10^7/s. RMI experiments involve shocking a metal interface with geometrical perturbations that invert, grow, and possibly arrest subsequent to the shock. In experiments one measures the growth and arrest velocities to study the specimen’s flow (deviatoric) strength. In this paper, we describe experiments on tantalum at three shock pressure from 20 to 34 GPa, with six different perturbation sizes at each pressure, making this the most comprehensive set of RMI experiments on any material. In addition, these experiments were fielded using impact loading, as compared to high explosive loading in previous experiments, allowing for more precise modeling and more extensive interpretation of the data. Preliminary results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piriz, A.R., Cela, J.J.L., Tahir, N.A., Hoffmann, D.H.H.: Richtmyer-Meshkov instability in elastic-plastic media. Phys. Rev. E. 78(5), 056401 (2008)

    Article  Google Scholar 

  2. Piriz, A.R., Cela, J.J.L., Tahir, N.A.: Richtmyer–Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl Instrum Meth A. 606(1), 139–141 (2009)

    Article  Google Scholar 

  3. Dimonte, G., Terrones, G., Cherne, F.J., Germann, T.C., Dupont, V., Kadau, K., Buttler, W.T., Oro, D.M., Morris, C., Preston, D.L.: Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett. 107(26), 264502 (2011)

    Article  Google Scholar 

  4. Buttler, W.T., Oró, D.M., Preston, D.L., Mikaelian, K.O., Cherne, F.J., Hixson, R.S., Mariam, F.G., Morris, C., Stone, J.B., Terrones, G., Tupa, D.: Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 60–84 (2012)

    Article  Google Scholar 

  5. López Ortega, A., Lombardini, M., Pullin, D.I., Meiron, D.I.: Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Phys. Rev. E. 89(3), 033018 (2014)

    Article  Google Scholar 

  6. Mikaelian, K.O.: Shock-induced interface instability in viscous fluids and metals. Phys. Rev. E. 87(3), 031003 (2013)

    Article  Google Scholar 

  7. Plohr, J.N., Plohr, B.J.: Linearized analysis of Richtmyer-Meshkov flow for elastic materials. J. Fluid Mech. 537, 55–89 (2005)

    Article  MathSciNet  Google Scholar 

  8. Prime, M.B., Vaughan, D.E., Preston, D.L., Buttler, W.T., Chen, S.R., Oró, D.M., Pack, C.: Using growth and arrest of Richtmyer-Meshkov instabilities and Lagrangian simulations to study high-rate material strength. J. Phys. Conf. Ser. 500(11), 112051 (2014)

    Article  Google Scholar 

  9. Opie, S., Gautam, S., Fortin, E., Lynch, J., Peralta, P., Loomis, E.: Behaviour of rippled shocks from ablatively-driven Richtmyer-Meshkov in metals accounting for strength. J. Phys. Conf. Ser. 717(1), 012075 (2016)

    Article  Google Scholar 

  10. John, K.K.: Strength of Tantalum at High Pressures through Richtmyer-Meshkov Laser Compression Experiments and Simulations. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA (2014)

    Google Scholar 

  11. Buttler, W.T., GrayIII, G.T., Fensin, S.J., Grover, M., Prime, M.B., Stevens, G.D., Stone, J.B., Turley, W.D.: Yield strength of Cu and a CuPb alloy (1% Pb). AIP Conf. Proc. 1793(1), 110005 (2017). https://doi.org/10.1063/1.4971668

    Article  Google Scholar 

  12. Sternberger, Z., Maddox, B.R., Opachich, Y.P., Wehrenberg, C.E., Kraus, R.G., Remington, B.A., Randall, G.C., Farrell, M., Ravichandran, G.: A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum. AIP Conf. Proc. 1793(1), 110006 (2017). https://doi.org/10.1063/1.4971669

    Article  Google Scholar 

  13. Prime, M.B., Buttler, W.T., Buechler, M.A., Denissen, N.A., Kenamond, M.A., Mariam, F.G., Martinez, J.I., Oró, D.M., Schmidt, D.W., Stone, J.B., Tupa, D., Vogan-McNeil, W.: Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov instabilities. J. Dyn. Behav. Mater. 3(2), 189–202 (2017). https://doi.org/10.1007/s40870-017-0103-9

    Article  Google Scholar 

  14. Prime, M.B.: Strain rate sensitivity of Richtmyer-Meshkov instability experiments for metal strength. In: Kimberley, J., Lamberson, L., Mates, S. (eds.) Dynamic Behavior of Materials, Volume 1: Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics, pp. 13–16. Springer International Publishing, Cham, Switzerland (2018). https://doi.org/10.1007/978-3-319-62956-8_3

    Chapter  Google Scholar 

  15. Opie, S.: Effects of Phase Transformations and Dynamic Material Strength on Hydrodynamic Instability Evolution in Metals. Ph.D. thesis Arizona State University, Tempe. Arizona, USA (2017)

    Google Scholar 

  16. Sternberger, Z., Opachich, Y., Wehrenberg, C., Kraus, R., Remington, B., Alexander, N., Randall, G., Farrell, M., Ravichandran, G.: Investigation of hydrodynamic instability growth in copper. Int. J. Mech. Sci. (2017). in press, https://doi.org/10.1016/j.ijmecsci.2017.08.051

    Article  Google Scholar 

  17. Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1–136 (2017). https://doi.org/10.1016/j.physrep.2017.07.005

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1–160 (2017). https://doi.org/10.1016/j.physrep.2017.07.008

    Article  MathSciNet  MATH  Google Scholar 

  19. Prime, M.B., Buttler, W.T., Buechler, M.A., Denissen, N.A., Kenamond, M.A., Mariam, F.G., Martinez, J.I., Oró, D.M., Schmidt, D.W., Stone, J.B., Tupa, D., Vogan-McNeil, W.: Estimation of metal strength at very high rates using free-surface Richtmyer-Meshkov instabilities. J. Dyn. Behavior Mater. 3(2), 189–202 (2017). https://doi.org/10.1007/s40870-017-0103-9

    Article  Google Scholar 

  20. Vachhani, S.J., Trujillo, C., Mara, N., Livescu, V., Bronkhorst, C., Gray, G.T., Cerreta, E.: Local mechanical property evolution during high strain-rate deformation of tantalum. J. Dyn. Behav. Mater. 2(4), 511–520 (2016). https://doi.org/10.1007/s40870-016-0085-z

    Article  Google Scholar 

  21. Buchheit, T.E., Cerreta, E.K., Diebler, L., Chen, S.-R., Michael, J.R.: Characterization of Tri-lab Tantalum (Ta) Plate. Sandia National Laboratories Report SAND2014-17645 (2014)

    Google Scholar 

  22. Lim, H., Bong, H.J., Chen, S.-R., Rodgers, T.M., Battaile, C.C., Lane, J.M.D.: Developing anisotropic yield models of polycrystalline tantalum using crystal plasticity finite element simulations. Int. J Solids Struct. 730(11), 50–56 (2018)

    Article  Google Scholar 

  23. Preston, D.L., Tonks, D.L., Wallace, D.C.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93(1), 211–220 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Prime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prime, M.B. et al. (2019). Improved Richtmyer-Meshkov Instability Experiments for Very-High-Rate Strength and Application to Tantalum. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics