Skip to main content

Development of “Dropkinson” Bar for Intermediate Strain-Rate Testing

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

A new apparatus – “Dropkinson Bar” – has been successfully developed for material property characterization at intermediate strain rates. This Dropkinson bar combines a drop table and a Hopkinson bar. The drop table was used to generate a relatively long and stable low-speed impact to the specimen, whereas the Hopkinson bar principle was applied to measure the load history with accounting for inertia effect in the system. Pulse shaping technique was also applied to the Dropkinson bar to facilitate uniform stress and strain as well as constant strain rate in the specimen. The Dropkinson bar was then used to characterize 304L stainless steel and 6061-T6 aluminum at a strain rate of ∼600 s−1. The experimental data obtained from the Dropkinson bar tests were compared with the data obtained from conventional Kolsky tensile bar tests of the same material at similar strain rates. Both sets of experimental results were consistent, showing the newly developed Dropkinson bar apparatus is reliable and repeatable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim, S.J., Huh, H.: Fracture loci of DP980 steel sheet for auto-body at intermediate strain rates. Int. J. Automot. Technol. 18, 719–727 (2017)

    Article  Google Scholar 

  2. Jing, J., Gao, F., Johnson, J., Liang, F.Z., Williams, R.L., Qu, J.: Brittle versus ductile failure of a lead-free single solder joint specimen under intermediate strain rate. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1456–1464 (2011)

    Article  Google Scholar 

  3. Gilat, A., Matrka, T.A.: A new compression intermediate strain rate testing apparatus. EPJ Web Conf. 6, 39002 (2010)

    Article  Google Scholar 

  4. Luo, H., Cooper, W.L., Lu, H.: Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates. Int. J. Impact Eng. 65, 40–55 (2014)

    Article  Google Scholar 

  5. Song, B., Syn, C.J., Grupido, C.L., Chen, W., Lu, W.-Y.: A long split Hopkinson pressure (LSHPB) for intermediate-rate characterization of soft materials. Exp. Mech. 48, 809–815 (2008)

    Article  Google Scholar 

  6. LeBlanc, M.M., Lassila, D.H.: A hybrid technique for compression testing at intermediate strain rates. Exp. Mech. 20, 21–24 (1996)

    Google Scholar 

  7. Petiteau, J.-C., Othman, R., Guégan, P., Le Sourne, H., Verron, E.: A drop-bar setup for the compressive testing of rubber-like materials in the intermediate strain rate range. Strain. 50, 552–562 (2014)

    Article  Google Scholar 

  8. Nie, X., Song, B., Loeffler, C.M.: A novel splitting-beam laser extensometer technique for Kolsky tension bar experiment. J. Dyn. Behav. Mater. 1, 70–74 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The views expressed in this article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, B. et al. (2019). Development of “Dropkinson” Bar for Intermediate Strain-Rate Testing. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics