Skip to main content

Mechanical Structure-Property Relationships for 2D Polymers Comprised of Nodes and Bridge Units

  • Conference paper
  • First Online:
Book cover Mechanics of Additive and Advanced Manufacturing, Volume 8

Abstract

2D polymers have emerged as an infinitely-tailorable material with remarkable, tunable response and density-normalized mechanical properties far exceeding structural materials such as steel, high-performance fibers or reinforced composites. It is critical that the vast material design space of 2D polymers be mapped in order to achieve optimal mechanical performance, since hundreds of permutations of one class of 2D polymers known as covalent organic frameworks have already been synthesized in the decade since the introduction of these materials. To this end, this work establishes a general structure-property relationship for elastic modulus and strength for a common 2D polymer motif consisting of nodes linked by linear bridge polymer chains to form a two-dimensional network. The length of the bridge chains are parametrically varied to study the impact of chain compliance on stiffness and strength. The density-normalized isotropic strength of the graphene/polyethylene hybrid material known as graphylene begins at 0.015 GPa/kg·m3 (50% higher than that of perfect crystalline Kevlar®) and the density-normalized isotropic stiffness is 0.143 GPa/kg·m3 (31% higher than Kevlar®) and decreases non-monotonically with increasing bridge chain length. The mechanical response is mapped and correlated to the inherent molecular structure of these general 2D polymer as a framework for designing 2D polymer molecules for mechanical applications from the ground up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sandoz-Rosado, E., Wetzel, E.D. (2019). Mechanical Structure-Property Relationships for 2D Polymers Comprised of Nodes and Bridge Units. In: Kramer, S., Jordan, J., Jin, H., Carroll, J., Beese, A. (eds) Mechanics of Additive and Advanced Manufacturing, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95083-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95083-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95082-2

  • Online ISBN: 978-3-319-95083-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics