Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 315 Accesses

Abstract

The granular lattice model analyzed in the last chapters has shown to reproduce realistic physical phenomena and to lead towards new analytical results on nonequilibrium fluctuating hydrodynamics [1,2,3]. The generality of the method brought us to the formulation of a lattice model of active matter, which will be developed along the same lines (Manacorda and Puglisi, Phys. Rev. Lett. 119:208003, 2017, [4]).

It don’t mean a thing

If it ain’t got that swing

(D. Ellington)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Lasanta, A. Manacorda, A. Prados, Fluctuating hydrodynamics and mesoscopic effects of spatial correlations in dissipative systems with conserved momentum. New J. Phys. 17, 083039 (2015). https://doi.org/10.1088/1367-2630/17/8/083039

  2. A. Manacorda, C.A. Plata, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: hydrodynamic description. J. Stat. Phys. 164(4), 810–841 (2016). https://doi.org/10.1007/s10955-016-1575-z

  3. C.A. Plata, A. Manacorda, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: finite-size effects. J. Stat. Mech. (Theor. Exp.) 2016(9), 093203 (2016). http://stacks.iop.org/1742-5468/2016/i=9/a=093203, https://doi.org/10.1088/1742-5468/2016/09/093203

  4. A. Manacorda, A. Puglisi, Lattice model to derive the fluctuating hydrodynamics of active particles with inertia. Phys. Rev. Lett. 119, 208003 (2017). https://doi.org/10.1103/PhysRevLett.119.208003

  5. D. Grossman, I.S. Aranson, E.B. Jacob, Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008). http://stacks.iop.org/1367-2630/10/i=2/a=023036, https://doi.org/10.1088/1367-2630/10/2/023036

  6. T. Mora, A.M. Walczak, L. Del Castello, F. Ginelli, S. Melillo, L. Parisi, M. Viale, A. Cavagna, I. Giardina, Local equilibrium in bird flocks. Nat. Phys. 12(12), 1153–1157 (2016). https://doi.org/10.1038/nphys3846

    Article  Google Scholar 

  7. T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(34), 71–140 (2012). http://www.sciencedirect.com/science/article/pii/S0370157312000968, https://doi.org/10.1016/j.physrep.2012.03.004

  8. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995). https://doi.org/10.1103/PhysRevLett.75.1226

  9. J. Tailleur, M.E. Cates, Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100, 218103 (2008). https://doi.org/10.1103/PhysRevLett.100.218103

  10. L. Angelani, Run-and-tumble particles, telegraphers equation and absorption problems with partially reflecting boundaries. J. Phys. A Math. Theory 48(49), 495003 (2015). http://stacks.iop.org/1751-8121/48/i=49/a=495003, https://doi.org/10.1088/1751-8113/48/49/495003

  11. R. Golestanian, Anomalous diffusion of symmetric and asymmetric active colloids. Phys. Rev. Lett. 102, 188305 (2009). https://doi.org/10.1103/PhysRevLett.102.188305

  12. J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105, 088304 (2010). https://doi.org/10.1103/PhysRevLett.105.088304

  13. A.P. Solon, M.E. Cates, Active Brownian particles and run-and-tumble particles: a comparative study. Eur. Phys. J. Spec. Top. 224(7), 1231–1262 (2015). https://doi.org/10.1140/epjst/e2015-02457-0

    Article  Google Scholar 

  14. B. Derrida, Y. Pomeau, Classical diffusion on a random chain. Phys. Rev. Lett. 48, 627–630 (1982). https://doi.org/10.1103/PhysRevLett.48.627

  15. B. Derrida, Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 31(3), 433–450 (1983). https://doi.org/10.1007/BF01019492

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Derrida, Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. (Theory Exp.) 2007(07), P07023 (2007). http://stacks.iop.org/1742-5468/2007/i=07/a=P07023, https://doi.org/10.1088/1742-5468/2007/07/P07023

  17. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013). https://doi.org/10.1103/RevModPhys.85.1143

  18. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016). https://doi.org/10.1103/RevModPhys.88.045006

  19. N. Koumakis, C. Maggi, R. Di Leonardo, Directed transport of active particles over asymmetric energy barriers. Soft Matter 10, 5695–5701 (2014). https://doi.org/10.1039/C4SM00665H

    Article  ADS  Google Scholar 

  20. T.F.F. Farage, P. Krinninger, J.M. Brader, Effective interactions in active Brownian suspensions. Phys. Rev. E 91, 042310 (2015). https://doi.org/10.1103/PhysRevE.91.042310

    Article  ADS  Google Scholar 

  21. C. Maggi, U.M.B. Marconi, N. Gnan, R. Di Leonardo, Multidimensional stationary probability distribution for interacting active particles. Sci. Rep. 5, 10742 (2015). https://doi.org/10.1038/srep10742

    Article  ADS  Google Scholar 

  22. U.M.B. Marconi, C. Maggi, Towards a statistical mechanical theory of active fluids. Soft Matter 11, 8768–8781 (2015). https://doi.org/10.1039/C5SM01718A

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Manacorda .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manacorda, A. (2018). Active Lattice Fluctuating Hydrodynamics. In: Lattice Models for Fluctuating Hydrodynamics in Granular and Active Matter. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95080-8_6

Download citation

Publish with us

Policies and ethics