Advertisement

Active Lattice Fluctuating Hydrodynamics

Chapter
  • 212 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The granular lattice model analyzed in the last chapters has shown to reproduce realistic physical phenomena and to lead towards new analytical results on nonequilibrium fluctuating hydrodynamics [1, 2, 3]. The generality of the method brought us to the formulation of a lattice model of active matter, which will be developed along the same lines (Manacorda and Puglisi, Phys. Rev. Lett. 119:208003, 2017, [4]).

Keywords

Swarm State Local Equilibrium Assumption Hopping Probability Granular Collisions Large Size Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Lasanta, A. Manacorda, A. Prados, Fluctuating hydrodynamics and mesoscopic effects of spatial correlations in dissipative systems with conserved momentum. New J. Phys. 17, 083039 (2015).  https://doi.org/10.1088/1367-2630/17/8/083039
  2. 2.
    A. Manacorda, C.A. Plata, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: hydrodynamic description. J. Stat. Phys. 164(4), 810–841 (2016).  https://doi.org/10.1007/s10955-016-1575-z
  3. 3.
    C.A. Plata, A. Manacorda, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: finite-size effects. J. Stat. Mech. (Theor. Exp.) 2016(9), 093203 (2016). http://stacks.iop.org/1742-5468/2016/i=9/a=093203,  https://doi.org/10.1088/1742-5468/2016/09/093203
  4. 4.
    A. Manacorda, A. Puglisi, Lattice model to derive the fluctuating hydrodynamics of active particles with inertia. Phys. Rev. Lett. 119, 208003 (2017).  https://doi.org/10.1103/PhysRevLett.119.208003
  5. 5.
    D. Grossman, I.S. Aranson, E.B. Jacob, Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008). http://stacks.iop.org/1367-2630/10/i=2/a=023036,  https://doi.org/10.1088/1367-2630/10/2/023036
  6. 6.
    T. Mora, A.M. Walczak, L. Del Castello, F. Ginelli, S. Melillo, L. Parisi, M. Viale, A. Cavagna, I. Giardina, Local equilibrium in bird flocks. Nat. Phys. 12(12), 1153–1157 (2016).  https://doi.org/10.1038/nphys3846CrossRefGoogle Scholar
  7. 7.
    T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(34), 71–140 (2012). http://www.sciencedirect.com/science/article/pii/S0370157312000968,  https://doi.org/10.1016/j.physrep.2012.03.004
  8. 8.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).  https://doi.org/10.1103/PhysRevLett.75.1226
  9. 9.
    J. Tailleur, M.E. Cates, Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100, 218103 (2008).  https://doi.org/10.1103/PhysRevLett.100.218103
  10. 10.
    L. Angelani, Run-and-tumble particles, telegraphers equation and absorption problems with partially reflecting boundaries. J. Phys. A Math. Theory 48(49), 495003 (2015). http://stacks.iop.org/1751-8121/48/i=49/a=495003,  https://doi.org/10.1088/1751-8113/48/49/495003
  11. 11.
    R. Golestanian, Anomalous diffusion of symmetric and asymmetric active colloids. Phys. Rev. Lett. 102, 188305 (2009).  https://doi.org/10.1103/PhysRevLett.102.188305
  12. 12.
    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105, 088304 (2010).  https://doi.org/10.1103/PhysRevLett.105.088304
  13. 13.
    A.P. Solon, M.E. Cates, Active Brownian particles and run-and-tumble particles: a comparative study. Eur. Phys. J. Spec. Top. 224(7), 1231–1262 (2015).  https://doi.org/10.1140/epjst/e2015-02457-0CrossRefGoogle Scholar
  14. 14.
    B. Derrida, Y. Pomeau, Classical diffusion on a random chain. Phys. Rev. Lett. 48, 627–630 (1982).  https://doi.org/10.1103/PhysRevLett.48.627
  15. 15.
    B. Derrida, Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 31(3), 433–450 (1983).  https://doi.org/10.1007/BF01019492ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    B. Derrida, Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. (Theory Exp.) 2007(07), P07023 (2007). http://stacks.iop.org/1742-5468/2007/i=07/a=P07023,  https://doi.org/10.1088/1742-5468/2007/07/P07023
  17. 17.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).  https://doi.org/10.1103/RevModPhys.85.1143
  18. 18.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).  https://doi.org/10.1103/RevModPhys.88.045006
  19. 19.
    N. Koumakis, C. Maggi, R. Di Leonardo, Directed transport of active particles over asymmetric energy barriers. Soft Matter 10, 5695–5701 (2014).  https://doi.org/10.1039/C4SM00665HADSCrossRefGoogle Scholar
  20. 20.
    T.F.F. Farage, P. Krinninger, J.M. Brader, Effective interactions in active Brownian suspensions. Phys. Rev. E 91, 042310 (2015).  https://doi.org/10.1103/PhysRevE.91.042310ADSCrossRefGoogle Scholar
  21. 21.
    C. Maggi, U.M.B. Marconi, N. Gnan, R. Di Leonardo, Multidimensional stationary probability distribution for interacting active particles. Sci. Rep. 5, 10742 (2015).  https://doi.org/10.1038/srep10742ADSCrossRefGoogle Scholar
  22. 22.
    U.M.B. Marconi, C. Maggi, Towards a statistical mechanical theory of active fluids. Soft Matter 11, 8768–8781 (2015).  https://doi.org/10.1039/C5SM01718AADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SapienzaRomeItaly

Personalised recommendations