Skip to main content

Granular Lattice: Fluctuating Hydrodynamics

  • Chapter
  • First Online:
  • 301 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Inspired from the works of Baldassarri et al. [1] and Prados et al. [2], we formulated a granular lattice model to derive fluctuating hydrodynamics from microscopic ingredients under controlled assumptions, considering only shear modes on a granular linear chain [3]. The evolution of the system conserves momentum and dissipates energy, as in granular collisions. The new model is different from the previous proposals in a few crucial aspects. In [1], the velocity field evolved under the enforcement of the so-called kinematic constraint, which is disregarded here. In [2], only the energy field was considered, therefore momentum conservation was absent. The results I present especially focus on the hydrodynamic behavior of the model; the analysis of velocity distribution evolution and a detailed approach to a mesoscopic fluctuation theory of our model can be found respectively in [4,5,6].

Jusqu’ici tout va bien

(La Haine)

The material in this chapter is mostly directed adapted from the following Springer publication and is reproduced here with permission: Alessandro Manacorda, Carlos A. Plata, Antonio Lasanta, Andrea Puglisi, and Antonio Prados. Lattice models for granular-like velocity fields: Hydrodynamic description. J. Stat. Phys., 164(4):810–841, Aug 2016.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the usual choice of an initial Gaussian distribution, see Sect. 4.3.1.

References

  1. A. Baldassarri, U. Marini Bettolo Marconi, A. Puglisi, Influence of correlations on the velocity statistics of scalar granular gases. EPL Europhys. Lett. 58(1),14 (2002). http://stacks.iop.org/0295-5075/58/i=1/a=014, https://doi.org/10.1209/epl/i2002-00600-6

  2. A. Prados, A. Lasanta, P.I. Hurtado, Large fluctuations in driven dissipative media. Phys. Rev. Lett. 107, 140601 (2011). https://link.aps.org/doi/10.1103/PhysRevLett.107.140601

  3. A. Lasanta, A. Manacorda, A. Prados, A. Puglisi, Fluctuating hydrodynamics and mesoscopic effects of spatial correlations in dissipative systems with conserved momentum. New J. Phys. 17, 083039 (2015). https://doi.org/10.1088/1367-2630/17/8/083039

    Article  ADS  Google Scholar 

  4. A. Manacorda, C.A. Plata, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: hydrodynamic description. J. Stat. Phys. 164(4), 810–841 (2016). https://doi.org/10.1007/s10955-016-1575-z

  5. C.A. Plata, A. Manacorda, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: finite-size effects. J. Stat. Mech. (Theor. Exp.) 2016(9), 093203 (2016). http://stacks.iop.org/1742-5468/2016/i=9/a=093203

  6. C.A. Plata, Ph.D. thesis, To be defended

    Google Scholar 

  7. J.J. Brey, M.J. Ruiz-Montero, D. Cubero, Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664–3671 (1996). https://link.aps.org/doi/10.1103/PhysRevE.54.3664

  8. M. Ernst, Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78(1), 1–171 (1981). http://www.sciencedirect.com/science/article/pii/0370157381900028

  9. M.H. Ernst, E. Trizac, A. Barrat, The rich behavior of the Boltzmann equation for dissipative gases. EPL (Europhys. Lett.) 76(1), 56 (2006). http://stacks.iop.org/0295-5075/76/i=1/a=056, https://doi.org/10.1209/epl/i2006-10225-3

  10. A. Bortz, M. Kalos, J. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17(1, 10–18 (1975). http://www.sciencedirect.com/science/article/pii/0021999175900601

  11. A. Prados, J.J. Brey, B. Sánchez-Rey, A dynamical Monte Carlo algorithm for master equations with time-dependent transition rates. J. Stat. Phys. 89(3), 709–734 (1997). http://dx.doi.org/10.1007/BF02765541

  12. N.G.V. Kampen. Stochastic Processes in Physics and Chemistry (North-Holland, 1992)

    Google Scholar 

  13. U. Marini Bettolo Marconi, A. Puglisi, A. Vulpiani, About an H-theorem for systems with non-conservative interactions.J. Stat. Mech. (Theor. Exp.) 2013(08), P08003 (2013). http://stacks.iop.org/1742-5468/2013/i=08/a=P08003

  14. M.I.G. de Soria, P. Maynar, S. Mischler, C. Mouhot, T. Rey, E. Trizac, Towards an H-theorem for granular gases. J. Stat. Mech. (Theor. Exp.) 2015(11), P11009 (2015). http://stacks.iop.org/1742-5468/2015/i=11/a=P11009

  15. C.A. Plata, A. Prados, Global stability and \(H\) theorem in lattice models with nonconservative interactions. Phys. Rev. E 95, 052121 (2017). https://link.aps.org/doi/10.1103/PhysRevE.95.052121

  16. P.K. Haff, Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983). https://doi.org/10.1017/S0022112083003419

    Article  ADS  MATH  Google Scholar 

  17. A.W. Lees, S.F. Edwards, The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys. 5(15), 1921 (1972). http://stacks.iop.org/0022-3719/5/i=15/a=006

  18. V. Garzó, Transport coefficients for an inelastic gas around uniform shear flow: linear stability analysis. Phys. Rev. E 73, 021304 (2006). https://link.aps.org/doi/10.1103/PhysRevE.73.021304

  19. A. Prados, A. Lasanta, P.I. Hurtado, Nonlinear driven diffusive systems with dissipation: fluctuating hydrodynamics. Phys. Rev. E 86, 031134 (2012). https://link.aps.org/doi/10.1103/PhysRevE.86.031134

  20. P.I. Hurtado, A. Lasanta, A. Prados, Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation. Phys. Rev. E 88, 022110 (2013). https://link.aps.org/doi/10.1103/PhysRevE.88.022110

  21. A. Lasanta, P.I. Hurtado, A. Prados, Statistics of the dissipated energy in driven diffusive systems. Eur. Phys. J. E 39(3), 35 (2016). http://dx.doi.org/10.1140/epje/i2016-16035-4

  22. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer Science & Business Media, Berlin, 2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Manacorda .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manacorda, A. (2018). Granular Lattice: Fluctuating Hydrodynamics. In: Lattice Models for Fluctuating Hydrodynamics in Granular and Active Matter. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95080-8_4

Download citation

Publish with us

Policies and ethics