Advertisement

Theoretical Models of Granular and Active Matter

Chapter
  • 237 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter introduces the main tehoretical models used to describe and reproduce the behavior of granular and active matter. The first Sect. 2.1 is dedicated to kinetic theory: established for the study of elastic gases, its aim is to describe a gas in term of mechanical coordinates of all its particles to derive its macroscopic properties such as pressure, energy and entropy through the statistical properties of the microscopic variables. This method, which was derived for elastic gases, can apply also for granular materials. The second Sect. 2.2 reviews the most important physical models of active matter, focusing on the essential ingredients to produce the typical interactions and self-propulsion discussed in Chap.  1. The last Sect. 2.3 investigates a possible theoretical comparison and symmetry between granular and active matter.

Keywords

Elastic Gas Homogeneous Cooling State (HCS) Vicsek Model Inelastic Collapse Active Brownian Particles (ABP) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Cercignani, R. Illner, M. Pulvirenti, in The Mathematical Theory of Dilute Gases (Springer Science & Business Media, Berlin, 2013)zbMATHGoogle Scholar
  2. 2.
    K. Huang, in Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)zbMATHGoogle Scholar
  3. 3.
    T. Pöschel, N.V. Brilliantov, in Granular Gas Dynamics (Springer, Berlin, 2003)CrossRefGoogle Scholar
  4. 4.
    N. Brilliantov, T. Pöschel (eds.), in Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004)zbMATHGoogle Scholar
  5. 5.
    A. Puglisi, in Transport and Fluctuations in Granular Fluids (Springer, Berlin, 2014)Google Scholar
  6. 6.
    M. Ernst, J. Dorfman, W. Hoegy, J.V. Leeuwen, Hard-sphere dynamics and binary-collision operators. Physica 45(1), 127–146 (1969). http://www.sciencedirect.com/science/article/pii/0031891469900676,  https://doi.org/10.1016/0031-8914(69)90067-6
  7. 7.
    J.-M. Hertzsch, F. Spahn, N.V. Brilliantov, On low-velocity collisions of viscoelastic particles. J. Phys. II Fr. 5(11), 1725–1738 (1995).  https://doi.org/10.1051/jp2:1995210CrossRefGoogle Scholar
  8. 8.
    N.V. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel, Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996).  https://doi.org/10.1103/PhysRevE.53.5382ADSCrossRefGoogle Scholar
  9. 9.
    A. Goldshtein, M. Shapiro, Mechanics of collisional motion of granular materials. part 1. general hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995).  https://doi.org/10.1017/S0022112095000048ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. McNamara, W.R. Young, Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A Fluid Dyn. 4(3), 496–504 (1992).  https://doi.org/10.1063/1.858323ADSCrossRefGoogle Scholar
  11. 11.
    S. McNamara, W.R. Young, Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E 53, 5089–5100 (1996).  https://doi.org/10.1103/PhysRevE.53.5089ADSCrossRefGoogle Scholar
  12. 12.
    T. van Noije, M. Ernst, Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul. Matter 1(2), 57–64 (1998).  https://doi.org/10.1007/s100350050009CrossRefGoogle Scholar
  13. 13.
    P.K. Haff, Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983).  https://doi.org/10.1017/S0022112083003419ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    I. Goldhirsch, G. Zanetti, Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993).  https://doi.org/10.1103/PhysRevLett.70.1619
  15. 15.
    J.J. Brey, M.J. Ruiz-Montero, F. Moreno, Steady-state representation of the homogeneous cooling state of a granular gas. Phys. Rev. E 69, 051303 (2004).  https://doi.org/10.1103/PhysRevE.69.051303ADSCrossRefGoogle Scholar
  16. 16.
    A. Puglisi, V. Loreto, U.M.B. Marconi, A. Petri, A. Vulpiani, Clustering and non-Gaussian behavior in granular matter. Phys. Rev. Lett. 81, 3848–3851 (1998).  https://doi.org/10.1103/PhysRevLett.81.3848
  17. 17.
    A. Puglisi, V. Loreto, U.M.B. Marconi, A. Vulpiani, Kinetic approach to granular gases. Phys. Rev. E 59, 5582–5595 (1999).  https://doi.org/10.1103/PhysRevE.59.5582ADSCrossRefGoogle Scholar
  18. 18.
    M. Ernst, Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981).  https://doi.org/10.1016/0370-1573(81)90002-8ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Blackwell, R.D. Mauldin, Ulam’s redistribution of energy problem: collision transformations. Lett. Math. Phys. 10(2), 149–153 (1985).  https://doi.org/10.1007/BF00398151ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    E. Ben-Naim, P.L. Krapivsky, Maxwell model of traffic flows. Phys. Rev. E 59, 88–97 (1999).  https://doi.org/10.1103/PhysRevE.59.88ADSCrossRefGoogle Scholar
  21. 21.
    E. Ben-Naim, P.L. Krapivsky, Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000).  https://doi.org/10.1103/PhysRevE.61.R5ADSCrossRefGoogle Scholar
  22. 22.
    A. Baldassarri, U.M.B. Marconi, A. Puglisi, Influence of correlations on the velocity statistics of scalar granular gases. EPL (Europhys. Lett.) 58(1), 14 (2002).  https://doi.org/10.1209/epl/i2002-00600-6
  23. 23.
    G. Costantini, U.M.B. Marconi, A. Puglisi, Velocity fluctuations in a one-dimensional inelastic Maxwell model. J. Stat. Mech. Theory Exp. 2007(08), P08031 (2007). http://stacks.iop.org/1742-5468/2007/i=08/a=P08031,  https://doi.org/10.1088/1742-5468/2007/08/P08031
  24. 24.
    T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(3–4), 71–140 (2012). http://www.sciencedirect.com/science/article/pii/S0370157312000968,  https://doi.org/10.1016/j.physrep.2012.03.004
  25. 25.
    J. Elgeti, R.G. Winkler, G. Gompper, Physics of microswimmers–single particle motion and collective behavior: a review. Rep. Prog. Phys. 78(5), 056601 (2015).  https://doi.org/10.1088/0034-4885/78/5/056601ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Baskaran, M.C. Marchetti, Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl. Acad. Sci. 106(37), 15567–15572 (2009).  https://doi.org/10.1073/pnas.0906586106ADSCrossRefGoogle Scholar
  27. 27.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).  https://doi.org/10.1103/RevModPhys.85.1143
  28. 28.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).  https://doi.org/10.1103/RevModPhys.88.045006
  29. 29.
    J. Tailleur, M.E. Cates, Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100, 218103 (2008).  https://doi.org/10.1103/PhysRevLett.100.218103
  30. 30.
    W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri, M. Viale, A.M. Walczak, Statistical mechanics for natural flocks of birds. Proc. Natl. Acad. Sci. 4791(13), 109–4786 (2012). http://www.pnas.org/content/109/13/4786.abstract, arXiv:http://www.pnas.org/content/109/13/4786.full.pdf,  https://doi.org/10.1073/pnas.1118633109
  31. 31.
    A.P. Solon, M.E. Cates, J. Tailleur, Active Brownian particles and run-and-tumble particles: a comparative study. Eur. Phys. J. Spec. Top. 224(7), 1231–1262 (2015).  https://doi.org/10.1140/epjst/e2015-02457-0CrossRefGoogle Scholar
  32. 32.
    M. Paoluzzi, C. Maggi, U.M.B. Marconi, N. Gnan, Critical phenomena in active matter. Phys. Rev. E 94, 052602 (2016).  https://doi.org/10.1103/PhysRevE.94.052602ADSCrossRefGoogle Scholar
  33. 33.
    A. Czirók, T. Vicsek, Collective behavior of interacting self-propelled particles. Phys. A Stat. Mech. Appl. 281(1–4), 17–29 (2000).  https://doi.org/10.1016/S0378-4371(00)00013-3CrossRefGoogle Scholar
  34. 34.
    H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B 64, 451–456 (2008).  https://doi.org/10.1140/epjb/e2008-00275-9ADSCrossRefGoogle Scholar
  35. 35.
    F. Ginelli, H. Chaté, Relevance of metric-free interactions in flocking phenomena. 105, 168103 (2010).  https://doi.org/10.1103/PhysRevLett.105.168103
  36. 36.
    A.P. Solon, J. Tailleur, Revisiting the flocking transition using active spins. Phys. Rev. Lett. 111, 078101 (2013).  https://doi.org/10.1103/PhysRevLett.111.078101
  37. 37.
    T. Mora, A.M. Walczak, L. Del Castello, F. Ginelli, S. Melillo, L. Parisi, M. Viale, A. Cavagna, I. Giardina, Local equilibrium in bird flocks. Nat. Phys. 12(12), 1153–1157 (2016).  https://doi.org/10.1038/nphys3846CrossRefGoogle Scholar
  38. 38.
    E. Fodor, C. Nardini, M.E. Cates, J. Tailleur, P. Visco, F. van Wijland, How far from equilibrium is active matter? Phys. Rev. Lett. 117, 038103 (2016).  https://doi.org/10.1103/PhysRevLett.117.038103
  39. 39.
    U.M.B. Marconi, A. Puglisi, C. Maggi, Heat, temperature and clausius inequality in a model for active Brownian particles. Sci. Rep. 7 (2017).  https://doi.org/10.1038/srep46496
  40. 40.
    Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators (Springer, Berlin, 1975), pp. 420–422.  https://doi.org/10.1007/BFb0013365
  41. 41.
    Y. Kuramoto, in Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)CrossRefGoogle Scholar
  42. 42.
    J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).  https://doi.org/10.1103/RevModPhys.77.137
  43. 43.
    E. Bertin, in Statistical Physics of Complex Systems (Springer, Berlin, 2016)CrossRefGoogle Scholar
  44. 44.
    E. Bertin, Theoretical approaches to the steady-state statistical physics of interacting dissipative units. J. Phys. A Math. Theory 50(8), 083001 (2017). http://stacks.iop.org/1751-8121/50/i=8/a=083001,  https://doi.org/10.1088/1751-8121/aa546b
  45. 45.
    S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D Nonlinear Phenom. 143(1), 1–20 (2000). http://www.sciencedirect.com/science/article/pii/S0167278900000944,  https://doi.org/10.1016/S0167-2789(00)00094-4
  46. 46.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).  https://doi.org/10.1103/PhysRevLett.75.1226
  47. 47.
    A. Czirók, H.E. Stanley, T. Vicsek, Spontaneously ordered motion of self-propelled particles. J. Phys. A Math. Gen. 30(5), 1375 (1997).  https://doi.org/10.1088/0305-4470/30/5/009ADSCrossRefGoogle Scholar
  48. 48.
    A. Czirók, E. Ben-Jacob, I. Cohen, T. Vicsek, Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E 54, 1791–1801 (1996).  https://doi.org/10.1103/PhysRevE.54.1791ADSCrossRefGoogle Scholar
  49. 49.
    A. Chepizhko, V. Kulinskii, On the relation between Vicsek and Kuramoto models of spontaneous synchronization. Phys. A Stat. Mech. Appl. 389(23), 5347–5352 (2010).  https://doi.org/10.1016/j.physa.2010.08.016CrossRefGoogle Scholar
  50. 50.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Active Brownian particles. Eur. Phys. J. Spec. Top. 202(1), 1–162 (2012).  https://doi.org/10.1140/epjst/e2012-01529-yCrossRefGoogle Scholar
  51. 51.
    C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences., 4th edn. (Springer, Berlin, 2009)Google Scholar
  52. 52.
    Phys. Rev. E Theory of continuum random walks and application to chemotaxis. 48, 2553–2568 (1993).  https://doi.org/10.1103/PhysRevE.48.2553
  53. 53.
    M.E. Cates, J. Tailleur, When are active Brownian particles and run-and-tumble particles equivalent? consequences for motility-induced phase separation. EPL (Europhys. Lett.) 101(2), 20010 (2013).  https://doi.org/10.1209/0295-5075/101/20010
  54. 54.
    N. Koumakis, C. Maggi, R. Di Leonardo, Directed transport of active particles over asymmetric energy barriers. Soft Matter 10, 5695–5701 (2014).  https://doi.org/10.1039/C4SM00665HADSCrossRefGoogle Scholar
  55. 55.
    T.F.F. Farage, P. Krinninger, J.M. Brader, Effective interactions in active Brownian suspensions. Phys. Rev. E 91, 042310 (2015).  https://doi.org/10.1103/PhysRevE.91.042310ADSCrossRefGoogle Scholar
  56. 56.
    C. Maggi, U.M.B. Marconi, N. Gnan, R. Di Leonardo, Multidimensional stationary probability distribution for interacting active particles. Sci. Rep. 5, 10742 (2015).  https://doi.org/10.1038/srep10742ADSCrossRefGoogle Scholar
  57. 57.
    U.M.B. Marconi, C. Maggi, Towards a statistical mechanical theory of active fluids. Soft Matter 11, 8768–8781 (2015).  https://doi.org/10.1039/C5SM01718AADSCrossRefGoogle Scholar
  58. 58.
    D. Grossman, I.S. Aranson, E.B. Jacob, Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008). http://stacks.iop.org/1367-2630/10/i=2/a=023036,  https://doi.org/10.1088/1367-2630/10/2/023036
  59. 59.
    C.A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dauchot, E. Frey, H. Chaté, Long-range ordering of vibrated polar disks. Phys. Rev. Lett. 110, 208001 (2013).  https://doi.org/10.1103/PhysRevLett.110.208001
  60. 60.
    J. Deseigne, O. Dauchot, H. Chaté, Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).  https://doi.org/10.1103/PhysRevLett.105.098001
  61. 61.
    N. Kumar, H. Soni, S. Ramaswamy, A. Sood, Flocking at a distance in active granular matter. Nat. Commun. 5 (2014).  https://doi.org/10.1038/ncomms5688

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SapienzaRomeItaly

Personalised recommendations