Skip to main content

Abstract

The crystallinity of stretched crystallizable rubbers is classically investigated using X-ray diffraction (XRD). In the present study, we propose a new method based on temperature measurement and quantitative calorimetry to determine rubber crystallinity during mechanical tests as those carried out with conventional mechanical testing machines. For that purpose, heat power density are first determined from temperature variation measurements and the heat diffusion equation. The increase in temperature due to strain-induced crystallization (SIC) is then deduced from the heat power density by subtracting the part due to elastic couplings. The heat capacity, the density and the enthalpy of fusion are finally used to calculate the crystallinity from the temperature variations due to SIC. The characterization of the stress-strain relationship is not required. Furthermore, nonentropic contributions to rubber elasticity are taken into account if any. This alternative crystallinity measurement method is a user-friendly measurement technique, which is well adapted to most of the mechanical tests. It opens numerous perspectives in terms of high speed and full crystallinity field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz, J.R.: Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturw. 4, 410–416 (1925)

    Article  Google Scholar 

  2. Bunn, C.W.: Molecular structure and rubber-like elasticity. I. The crystal structures of Gutta-Percha, rubber and polychloroprene. Proc. R. Soc. London, Ser. 1. 180, 40–66 (1942)

    Article  Google Scholar 

  3. Takahashi, Y., Kumano, T.: Crystal structure of natural rubber. Macromolecules. 37, 4860 (2004)

    Article  Google Scholar 

  4. Immirzi, A., Tedesco, C., Monaco, G., Tonelli, A.E.: Crystal structure and melting entropy of natural rubber. Macromolecules. 38, 1223 (2005)

    Article  Google Scholar 

  5. Rajkumar, G., Squire, J.M., Arnott, S.: A new structure for crystalline natural rubber. Macromolecules. 39, 7004 (2006)

    Article  Google Scholar 

  6. Toki, S., Sics, I., Ran, S.F., Liu, L.Z., Hsiao, B.S., Murakami, S., Tosaka, M., Kohjiya, S., Poompradub, S., Ikeda, Y., Tsou, A.H.: Strain-induced molecular orientation and crystallization in natural and synthetic rubbers under uniaxial deformation by in-situ synchrotron X-ray study. Rubber Chem. Technol. 77, 317–335 (2004)

    Article  Google Scholar 

  7. Toki, S., Fujimaki, T., Okuyama, M.: Strain-induced crystallization of natural rubber as detected real-time by wide-angle x-ray diffraction technique. Polymer. 41, 5423–5429 (2000)

    Article  Google Scholar 

  8. Trabelsi, S., Albouy, P.-A., Rault, J.: Effective local deformation in stretched filled rubber. Macromolecules. 36, 9093–9099 (2003)

    Article  Google Scholar 

  9. Brüning, K., Schneider, K., Roth, S.V., Heinrich, G.: Strain-induced crystallization around a crack tip in natural rubber under dynamic load. Polymer. 54(22), 6200–6205 (2013)

    Article  Google Scholar 

  10. Rublon, P., Huneau, B., Verron, E., Saintier, N., Beurrot, S., Leygue, A., Mocuta, C., Thiaudière, D., Berghezan, D.: Multiaxial deformation and strain induced crystallization around a fatigue crack in natural rubber. Eng. Fract. Mech. 123, 59–69 (2014)

    Article  Google Scholar 

  11. Demassieux, Q.: Structural changes in the process zone of a cyclic fatigue crack in filled natural rubber. PhD thesis, Université Pierre et Marie Curie (2016)

    Google Scholar 

  12. Göritz, D., Müller, F.H.: Die kalorimetrische Erfassung der Dehnungskristallisation Polymerer. Kolloid-Zeitschrift und Zeitschrift für Polymere. 241(20), 1075–1079 (1970)

    Article  Google Scholar 

  13. Boonstra, B.B.S.T.: Some properties of vulcanized rubber under strain – degree of crystallization as calculated from temperature coefficient of elastic tension. Ind. Eng. Chem. 4(2), 3:362–3:365 (1951)

    Google Scholar 

  14. Samaca Martinez, J.R., Le Cam, J.B., Balandraud, X., Toussaint, E., Caillard, J.: New elements concerning the Mullins effect: a thermomechanical analysis. Eur. Polym. J. 55, 98–107 (2014)

    Article  Google Scholar 

  15. Samaca Martinez, J.R., Balandraud, X., Toussaint, E., Le Cam, J.B., Berghezan, D.: Thermomechanical analysis of the crack tip zone in stretched crystallizable natural rubber by using infrared thermography and digital image correlation. Polymer. 55, 6345–6353 (2014)

    Article  Google Scholar 

  16. Samaca Martinez, J.R., Balandraud, X., Toussaint, E., Le Cam, J.B., Berghezan, D.: Heat and strain measurements at the crack tip of filled rubber under cyclic loadings using full field techniques. Mech. Mater. 81, 62–71 (2015)

    Article  Google Scholar 

  17. Spratte, T., Plagge, J., Wunde, M., Klueppel, M.: Investigation of strain-induced crystallization of carbon black and silica filled natural rubber composites based on mechanical and temperature measurements. Polymer. 115, 12–20 (2017)

    Article  Google Scholar 

  18. Meyer, K.H., Ferri, C.: Sur l’élasticité du caoutchouc. Helv. Chim. Acta. 18, 570–589 (1935)

    Article  Google Scholar 

  19. Wolf, F.P., Allen, G.: The energetic contribution to rubber elasticity in the range of small uniaxial compression and moderate elongation. Polymer. 16, 209–217 (1975)

    Article  Google Scholar 

  20. Allen, G., Bianchi, U., Price, C.: Thermodynamics of elasticity of natural rubber. Trans. Faraday Soc. 59, 2493 (1963)

    Article  Google Scholar 

  21. Allen, G., Kirkham, M.J., Padget, J., Price, C.: Thermodynamics of rubber elasticity at constant volume. Trans. Faraday Soc. 67, 1278 (1971)

    Article  Google Scholar 

  22. Shen, M.C.: Internal energy contribution to the elasticity of natural rubber. Macromolecules. 2, 358–364 (1969)

    Article  Google Scholar 

  23. Le Cam, J.-B.: Energy storage due to strain-induced crystallization in natural rubber: the physical origin of the mechanical hysteresis. Polymer. 127, 166–173 (2017)

    Article  Google Scholar 

  24. Treloar, L.R.G.: The elasticity and related properties of rubbers. Rep. Prog. Phys. 36(7), 755 (1973)

    Article  Google Scholar 

  25. Heinrich, G., Kaliske, M., Klüppel, M., Mark, J.E., Straube, E., Vilgis, T.A.: The thermoelasticity of rubberlike materials and related constitutive laws. J. Macromol. Sci. Part A. 40, 87–93 (2003)

    Article  Google Scholar 

  26. Chrysochoos, A.: Analyse du comportement des matériaux par thermographie infra rouge. Colloque Photomécanique. 95, 201–211 (1995)

    Google Scholar 

  27. Samaca Martinez, J.R., Le Cam, J.-B., Balandraud, X., Toussaint, E., Caillard, J.: Mechanisms of deformation in crystallizable natural rubber. Part 2: quantitative calorimetric analysis. Polymer. 54, 2727–2736 (2013)

    Article  Google Scholar 

  28. Samaca Martinez, J.R., Le Cam, J.-B., Balandraud, X., Toussaint, E., Caillard, J.: Mechanisms of deformation in crystallizable natural rubber. Part 1: thermal characterization. Polymer. 54, 2717–2726 (2013)

    Article  Google Scholar 

  29. Roberts, D.E., Mandelkern, L.: Thermodynamics of crystallization in high polymers. Natural rubber. Rubber Chem. Technol. 28(3), 718–727 (1955)

    Article  Google Scholar 

  30. Le Cam, J.-B., Huneau, B., Verron, E.: Fatigue damage in carbon black filled natural rubber under uni- and multiaxial loading conditions. Int. J. Fatigue. 52, 82–94 (2013)

    Article  Google Scholar 

  31. Le Cam, J.-B., Huneau, B., Verron, E., Gornet, L.: Description of fatigue damage in carbon black filled natural rubber. Fatigue Fract. Eng. Mater. Struct. 31(12), 1031–1038 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Benoît Le Cam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Cam, JB. (2019). Measuring Strain-Induced Crystallinity in Rubbers from IR Thermography. In: Baldi, A., Quinn, S., Balandraud, X., Dulieu-Barton, J., Bossuyt, S. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95074-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95074-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95073-0

  • Online ISBN: 978-3-319-95074-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics